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Abstract
Facebook uses flash devices extensively in its photo-
caching stack. The key design challenge for an efficient
photo cache on flash at Facebook is its workload: many
small random writes are generated by inserting cache-
missed content, or updating cache-hit content for ad-
vanced caching algorithms. The Flash Translation Layer
on flash devices performs poorly with such a workload,
lowering throughput and decreasing device lifespan. Ex-
isting coping strategies under-utilize the space on flash
devices, sacrificing cache capacity, or are limited to sim-
ple caching algorithms like FIFO, sacrificing hit ratios.

We overcome these limitations with the novel Re-
stricted Insertion Priority Queue (RIPQ) framework that
supports advanced caching algorithms with large cache
sizes, high throughput, and long device lifespan. RIPQ
aggregates small random writes, co-locates similarly pri-
oritized content, and lazily moves updated content to fur-
ther reduce device overhead. We show that two fam-
ilies of advanced caching algorithms, Segmented-LRU
and Greedy-Dual-Size-Frequency, can be easily imple-
mented with RIPQ. Our evaluation on Facebook’s photo
trace shows that these algorithms running on RIPQ in-
crease hit ratios up to ~20% over the current FIFO sys-
tem, incur low overhead, and achieve high throughput.

1 Introduction
Facebook has a deep and distributed photo-caching stack
to decrease photo delivery latency and backend load.
This stack uses flash for its capacity advantage over
DRAM and higher I/O performance than magnetic disks.

A recent study [20] shows that Facebook’s photo
caching hit ratios could be significantly improved with
more advanced caching algorithms, i.e., the Segmented-
LRU family of algorithms. However, naive implementa-
tions of these algorithms perform poorly on flash. For
example, Quadruple-Segmented-LRU, which achieved
~70% hit ratio, generates a large number of small ran-
dom writes for inserting missed content (~30% misses)
and updating hit content (~70% hits). Such a random
write heavy workload would cause frequent garbage col-
lections at the Flash Translation Layer (FTL) inside mod-
ern NAND flash devices—especially when the write size
is small—resulting in high write amplification, decreased
throughput, and shortened device lifespan [36].

Existing approaches to mitigate this problem often re-
serve a significant portion of device space for the FTL

(over-provisioning), hence reducing garbage collection
frequency. However, over-provisioning also decreases
available cache capacity. As a result, Facebook previ-
ously only used a FIFO caching policy that sacrifices
the algorithmic advantages to maximize caching capacity
and avoid small random writes.

Our goal is to design a flash cache that supports ad-
vanced caching algorithms for high hit ratios, uses most
of the caching capacity of flash, and does not cause
small random writes. To achieve this, we design and
implement the novel Restricted Insertion Priority Queue
(RIPQ) framework that efficiently approximates a prior-
ity queue on flash. RIPQ presents programmers with the
interface of a priority queue, which our experience and
prior work show to be a convenient abstraction for im-
plementing advanced caching algorithms [10, 45].

The key challenge and novelty of RIPQ is how to
translate and approximate updates to the (exact) prior-
ity queue into a flash-friendly workload. RIPQ aggre-
gates small random writes in memory, and only issues
aligned large writes through a restricted number of in-
sertion points on flash to prevent FTL garbage collec-
tion and excessive memory buffering. Objects in cache
with similar priorities are co-located among these inser-
tion points. This largely preserves the fidelity of ad-
vanced caching algorithms on top of RIPQ. RIPQ also
lazily moves content with an updated priority only when
it is about to be evicted, further reducing overhead with-
out harming the fidelity. As a result, RIPQ approximates
the priority queue abstraction with high fidelity, and only
performs consolidated large aligned writes on flash with
low write amplification.

We also present the Single Insertion Priority Queue
(SIPQ) framework that approximates a priority queue
with a single insertion point. SIPQ is designed for
memory-constrained environments and enables the use
of simple algorithms like LRU, but is not suited to sup-
port more advanced algorithms.

RIPQ and SIPQ have applicability beyond Facebook’s
photo caches. They should enable the use of advanced
caching algorithms for static-content caching—i.e., read-
only caching—on flash in general, such as in Netflix’s
flash-based video caches [38].

We evaluate RIPQ and SIPQ by implementing two
families of advanced caching algorithms, Segmented-
LRU (SLRU) [26] and Greedy-Dual-Size-Frequency
(GDSF) [12], with them and testing their performance
on traces obtained from two layers of Facebook’s photo-
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Figure 1: Facebook photo-serving stack. Requests
are directed through two layers of caches. Each cache
hashes objects to a flash equipped server.

caching stack: the Origin cache co-located with back-
end storage, and the Edge cache spread across the world
directly serving photos to the users. Our evaluation
shows that both families of algorithms achieve substan-
tially higher hit ratios with RIPQ and SIPQ. For example,
GDSF algorithms with RIPQ increase hit ratio in the Ori-
gin cache by 17-18%, resulting in a 23-28% decrease in
I/O load of the backend.

The contributions of this paper include:
• A flash performance study that identifies a significant

increase in the minimum size for max-throughput ran-
dom writes and motivates the design of RIPQ.

• The design and implementation of RIPQ, our primary
contribution. RIPQ is a framework for implementing
advanced caching algorithms on flash with high space
utilization, high throughput, and long device lifespan.

• The design and implementation of SIPQ, an upgrade
from FIFO in memory constrained environments.

• An evaluation on Facebook photo traces that demon-
strates advanced caching algorithms on RIPQ (and
LRU on SIPQ) can be implemented with high fidelity,
high throughput, and low device overhead.

2 Background & Motivation
Facebook’s photo-serving stack, shown in Figure 1, in-
cludes two caching layers: an Edge cache layer and an
Origin cache. At each cache site, individual photo ob-
jects are hashed to different caching machines according
to their URI. Each caching machine then functions as an
independent cache for its subset of objects.1

The Edge cache layer includes many independent
caches spread around the globe at Internet Points of Pres-
ence (POP). The main objective of the Edge caching
layer—in addition to decreasing latency for users—is de-
creasing the traffic sent to Facebook’s datacenters, so the
metric for evaluating its effectiveness is byte-wise hit ra-
tio. The Origin cache is a single cache distributed across

1Though the stack was originally designed to serve photos, now it
handles videos, attachments, and other static binary objects as well. We
use “objects” to refer to all targets of the cache in the text.

Device Model A Model B Model C
Capacity 670GiB 150GiB ~1.8TiB
Interface PCI-E SATA PCI-E

Seq Write Perf 590MiB/s 160MiB/s 970MiB/s
Rand Write Perf 76MiB/s 19MiB/s 140MiB/s

Read Perf 790MiB/s 260MiB/s 1500MiB/s
Max-Throughput 512MiB 256MiB 512MiBWrite Size

Table 1: Flash performance summary. Read and
write sizes are 128KiB. Max-Throughput Write Size
is the smallest power-of-2 size that achieves sustained
maximum throughput at maximum capacity.

Facebook’s datacenters that sits behind the Edge cache.
Its main objective is decreasing requests to Facebook’s
disk-based storage backends, so the metric for its effec-
tiveness is object-wise hit ratio. Facing high request rates
for a large set of objects, both the Edge and Origin caches
are equipped with flash drives.

This work is motivated by the finding that SLRU, an
advanced caching algorithm, can increase the byte-wise
and object-wise hit ratios in the Facebook stack by up
to 14% [20]. However, two factors confound naive im-
plementations of advanced caching algorithm on flash.
First, the best algorithm for workloads at different cache
sites varies. For example, since Huang et al. [20], we
have found that GDSF achieves an even higher object-
wise hit ratio than SLRU in the Origin cache by favoring
smaller objects (see Section 6.2), but SLRU still achieves
the highest byte-wise hit ratio at the Edge cache. There-
fore, a unified framework for many caching algorithms
can greatly reduce the engineering effort and hasten the
deployment of new caching policies. Second, flash-
based hardware has unique performance characteristics
that often require software customization. In particular,
a naive implementation of advanced caching algorithms
may generate a large number of small random writes on
flash, by inserting missed content or updating hit content.
The next section demonstrates that modern flash devices
perform poorly under such workloads.

3 Flash Performance Study
This section presents a study of modern flash devices that
motivates our designs. The study focuses on write work-
loads that stress the FTL on the devices because write
throughput was the bottleneck that prevented Facebook
from deploying advanced caching algorithms. Even for a
read-only cache, writes are a significant part of the work-
load as missed content is inserted with a write. At Face-
book, even with the benefits of advanced caching algo-
rithms, the maximum hit ratio is ~70%, which results in
at least 30% of accesses being writes.

Previous studies [17, 36] have shown that small ran-
dom writes are harmful for flash. In particular, Min et
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(a) Write amplification for Model A (b) Throughput for Model A (c) Throughput for Model B

Figure 2: Random write experiment on Model A and Model B.

al. [36] shows that at high space utilization, i.e., 90%,
random write size must be larger than 16 MB or 32 MB
to reach peak throughput on three representative SSDs
in 2012, with capacities ranging between 32 GB and 64
GB. To update our understanding to current flash de-
vices, we study the performance characteristics on three
flash cards, and their specifications and major metrics are
listed in Table 1. All three devices are recent models
from major vendors,2 and A and C are currently deployed
in Facebook photo caches.

3.1 Random Write Experiments
This subsection presents experiments that explore the
trade-off space between write size and device over-
provisioning on random write performance. In these ex-
periments we used different sizes to partition the device
and then perform aligned random writes of that size un-
der varying space utilizations. We use the flash drive as
a raw block device to avoid filesystem overheads. Be-
fore each run we use blkdiscard to clear the existing
data, and then repeatedly pick a random aligned location
to perform write/overwrite. We write to the device with
4 times the data of its total capacity before reporting the
final stabilized throughput. In each experiment, the ini-
tial throughput is always high, but as the device becomes
full, the garbage collector kicks in, causing FTL write
amplification and dramatic drop in throughput.

During garbage collection, the FTL often writes more
data to the physical device than what is issued by the
host, and the byte-wise ratio between these two write
sizes is the FTL write amplification [19]. Figure 2a and
Figure 2b show the FTL write amplification and device
throughput for the random write experiments conducted
on the flash drive Model A. The figures illustrate that
as writes become smaller or space utilization increases,
write throughput dramatically decreases and FTL write
amplification increases. For example, 8 MiB random
writes at 90% device utilization achieve only 160 MiB/s,
a ~3.7x reduction from the maximum 590 MiB/s. We
also experimented with mixed read-write workloads and
the same performance trend holds. Specifically, with a
50% read and 50% write workload, 8 MiB random writes

2Vendor/model omitted due to confidentiality agreements.

at 90% utilization lead to a ~2.3x throughput reduction.
High FTL write amplification also reduces device lifes-
pan, and as the erasure cycle continues to decrease for
large capacity flash cards, the effects of small random
writes become worse over time [5, 39].

Similar throughput results on flash drive Model B are
shown in Figure 2c. However, its FTL write amplifica-
tion is not available due to the lack of monitoring tools
for physical writes on the device. Our experiments on
flash drive Model C (details elided due to space limita-
tions) agree with Model A and B results as well. Because
of the low throughput under high utilization with small
write size, more than 1000 device hours are spent in total
to produce the data points in Figure 2.

While our findings agree with the previous study [36]
in general, we are surprised to find that under 90% device
utilization, the minimum write size to achieve peak ran-
dom write throughput has reached 256 MiB to 512 MiB.
This large write size is necessary because modern flash
hardware consists of many parallel NAND flash chips [3]
and the aggregated erase block size across all parallel
chips can add up to hundreds of megabytes. Commu-
nications with vendor engineers confirmed this hypothe-
sis. This constraint informs RIPQ’s design, which only
issues large aligned writes to achieve low write amplifi-
cation and high throughput.

3.2 Sequential Write Experiment
A common method to achieve sustained high write
throughput on flash is to issue sequential writes. The
FTL can effectively aggregate sequential writes to paral-
lel erase blocks [30], and on deletes and overwrites all
the parallel blocks can be erased together without writ-
ing back any still-valid data. As a result, the FTL write
amplification can be low or even avoided entirely. To
confirm this, we also performed sequential write experi-
ments to the same three flash devices. We observed sus-
tained high performance for all write sizes above 128KiB
as reported in Table 1.3 This result motivates the design
of SIPQ, which only issues sequential writes.

3Write amplification is low for tiny sequential writes, but they attain
lower throughput as they are bound by IOPS instead of bandwidth.
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4 RIPQ
This section describes the design and implementation of
the RIPQ framework. We show how it approximates the
priority queue abstraction on flash devices, present its
implementation details, and then demonstrate that it effi-
ciently supports advanced caching algorithms.

4.1 Priority Queue Abstraction
Our experience and previous studies [10, 45] have shown
that a Priority Queue is a general abstraction that natu-
rally supports various advanced caching policies. RIPQ
provides that abstraction by maintaining content in its
internal approximate priority queue, and allowing cache
operations through three primitives:

• insert(x, p): insert a new object x with priority value p.
• increase(x, p): increase the priority value of x to p.
• delete-min(): delete the object with the lowest priority.

The priority value of an object represents its utility to
the caching algorithm. On a hit, increase is called to ad-
just the priority of the accessed object. As the name sug-
gests, RIPQ limits priority adjustment to increase only.
This constraint simplifies the design of RIPQ and still al-
lows almost all caching algorithms to be implemented.
On a miss, insert is called to add the accessed object.
Delete-min is implicitly called to remove the object with
the minimum priority value when a cache eviction is trig-
gered by insertion. Figure 3 shows the architecture of
a caching solution implemented with the priority queue
abstraction, where RIPQ’s components are highlighted
in gray. These components are crucial to avoid a small-
random-writes workload, which can be generated by a
naive implementation of priority queue. RIPQ’s internal
mechanisms are further discussed in Section 4.2.

Absolute/Relative Priority Queue Cache designers
using RIPQ can specify the priority of their content based
on access time, access frequency, size, and many other
factors depending on the caching policy. Although tradi-
tional priority queues typically use absolute priority val-
ues that remain fixed over time, RIPQ operates on a dif-
ferent relative priority value interface. In a relative pri-
ority queue, an object’s priority is a number in the [0,1]
range representing the position of the object relative to
the rest of the queue. For example, if an object i has a
relative priority of 0.2, then 20% of the objects in queue
have lower priority values than i and their positions are
closer to the tail.

The relative priority of an object is explicitly changed
when increase is called on it. The relative priority of an
object is also implicitly decreased as other objects are
inserted closer to the head of the queue. For instance,
if an object j is inserted with a priority of 0.3, then all
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Figure 3: Advanced caching policies with RIPQ.
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objects with priorities ≤ 0.3 will be pushed towards the
tail and their priority value implicitly decreased.

Many algorithms, including the SLRU family, can be
easily implemented with the relative priority queue in-
terface. Others, including the GDSF family, require an
absolute priority interface. To support these algorithms
RIPQ translates from absolutes priorities to relative pri-
orities, as we explain in Section 4.3.

4.2 Overall Design
RIPQ is a framework that converts priority queue oper-
ations into a flash-friendly workload with large writes.
Figure 4 gives a detailed illustration of the RIPQ compo-
nents highlighted in Figure 3, excluding the Index Map.

Index Map The Index Map is an in-memory hash table
which associates all objects’ keys with their metadata, in-
cluding their locations in RAM or flash, sizes, and block
IDs. The block structure is explained next.

In our system each entry is ~20 bytes, and RIPQ adds 2
bytes to store the virtual block ID of an object. Consider-
ing the capacity of the flash card and the average object
size, there are about 50 million objects in one caching
machine and the index is ~1GiB in total.

Queue Structure The major Queue Structure of RIPQ
is composed of K sections that are in turn composed
of blocks. Sections define the insertion points into
the queue and a block is the unit of data written
to flash. The relative priority value range is split

4
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Algorithm Interface Used On Miss On Hit

Segmented-L LRU Relative Priority Queue insert(x, 1
L ) increase(x, min(1,(1+⌈p·L⌉)

L ))

Greedy-Dual-Size-Frequency L Absolute Priority Queue insert(x,Lowest+ c(x)
s(x) ) increase(x,Lowest+ c(x)min(L,n(x))

s(x) )

Table 2: SLRU and GDSF with the priority queue interface provided by RIPQ.

into the K intervals corresponding to the sections:
[1, pK−1], . . . ,(pk, pk−1], . . . ,(p1,0].4 When an object is
inserted into the queue with priority p, it is placed in the
head of the section whose range contains p. For exam-
ple, in a queue with sections corresponding to [1,0.7],
(0.7,0.3] and (0.1,0], an object with priority value 0.5
would be inserted to the head of second section. Similar
to relative priority queues, when an object is inserted to a
queue of N objects, any object in the same or lower sec-
tions with priority q is implicitly demoted from priority
q to qN

N+1 . Implicit demotion captures the dynamics of
many caching algorithms, including SLRU and GDSF:
as new objects are inserted to the queue, the priority of an
old object gradually decreases and it is eventually evicted
from the cache when its priority reaches 0.

RIPQ approximates the priority queue abstraction be-
cause its design restricts where data can be inserted. The
insertion point count, K, represents the key design trade-
off in RIPQ between insertion accuracy and memory
consumption. Each section has size O( 1

K ), so larger Ks
result in smaller sections and thus higher insertion accu-
racy. However, because each active block is buffered in
RAM until it is full and flushed to flash, the memory con-
sumption of RIPQ is proportional to K. Our experiments
show K = 8 ensures that that RIPQ achieves hit ratios
similar to the exact algorithm, and we use this value in
our experiments. With 256MiB device blocks, it trans-
lates to a moderate memory footprint of 2GiB.

Device and Virtual Blocks As shown in Figure 4, each
section includes one active device block, one active vir-
tual block, and an ordered list of sealed device/virtual
blocks. An active device block accepts insertions of new
objects and buffers them in memory, i.e, the Block Buffer.
When full it is sealed, flushed to flash, and transitions
into a sealed device block. To avoid duplicating data on
flash RIPQ lazily updates the location of an object when
its priority is increased, and uses virtual blocks to track
where an object would have been moved. The active vir-
tual block at the head of each section accepts virtually-
updated objects with increased priorities. When the ac-
tive device block for a section is sealed, RIPQ also tran-
sitions the active virtual block into a sealed virtual block.
Virtual update is an in-memory only operation, which
sets the virtual block ID for the object in the Index Map,
increases the size counter for the target virtual block, and

4We have inverted the notation of intervals from [low,high) to
(high,low] to make it consistent with the priority order in the figures.

decreases the size counter of the object’s original block.
All objects associated with a sealed device block are

stored in a contiguous space on flash. Within each block,
a header records all object keys and their offsets in the
data following the header. As mentioned earlier, an up-
dated object is marked with its target virtual block ID
within the Index Map. Upon eviction of a sealed device
block, the block header is examined to determine all ob-
jects in the block. The objects are looked up in the Index
Map to see if their virtual block ID is set, i.e., their pri-
ority was increased after insertion. If so, RIPQ reinserts
the objects to the priorities represented by their virtual
blocks. The objects move into active device blocks and
their corresponding virtual objects are deleted. Because
the updated object will not be written until the old object
is about to be evicted, RIPQ maintains at most one copy
of each object and duplication is avoided. In addition,
lazy updates also allow RIPQ to coalesce all the priority
updates to an object between its insertion and reinsertion.

Device blocks occupy a large buffer in RAM (active)
or a large contiguous space on flash (sealed). In con-
trast, virtual blocks resides only in memory and are very
small. Each virtual block includes only metadata, e.g.,
its unique ID, the count of objects in it, and the total byte
size of those objects.

Naive Design One naive design of a priority queue on
flash would be to fix an object’s location on flash until it
is evicted. This design avoids any writes to flash on pri-
ority update but does not align the location of an object
with its priority. As a result the space of evicted objects
on flash would be non-contiguous and the FTL would
have to coalesce the scattered objects by copying them
forward to reuse the space, resulting in significant FTL
write amplification. RIPQ avoids this issue by group-
ing objects of similar priorities into large blocks and per-
forming writes and evictions on the block level, and by
using lazy updates to avoid writes on update.

4.3 Implementing Caching Algorithms
To demonstrate the flexibility of RIPQ, we implemented
two families of advanced caching algorithms for eval-
uation: Segmented-LRU [26], and Greedy-Dual-Size-
Frequency [12], both of which yield major caching per-
formance improvement for Facebook photo workload. A
summary of the implementation is shown in Table 2.

Segmented-LRU Segmented-L LRU (S-L-LRU)
maintains L LRU caches of equal size. On a miss, an

5
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Figure 5: Insertion, and increase, and delete-min operations in RIPQ.

object is inserted to the head of the L-th (the last) LRU
cache. On a hit, an object is promoted to the head of the
previous LRU cache, i.e., if it is in sub-cache l, it will
be promoted to the head of the max(l − 1,1)-th LRU
cache. An object evicted from the l-th cache will go
to the head of the (l + 1)-th cache, and objects evicted
from the last cache are evicted from the whole cache.
This algorithm was demonstrated to provide significant
cache hit ratio improvements for the Facebook Edge and
Origin caches [20].

Implementing this family of caching algorithms is
straightforward with the relative priority queue interface.
On a miss, the object is inserted with priority value
1
L , equaling to the head of the L-th cache. On a hit,
based on the existing priority p of the accessed object,
RIPQ promotes it from the ⌈(1− p) ·L⌉-th cache to the
head of the previous cache with the new, higher prior-
ity min(1, 1+⌈p·L⌉

L ). With the relative priority queue ab-
straction, an object’s priority is automatically decreased
when another object is inserted/updated to a higher pri-
ority. When an object is inserted at the head of the l-th
LRU cache, all objects in l-th to L-th caches are demoted,
and ones at the tail of these caches will be either demoted
to the next lower priority cache or evicted if they are in
the last L-th cache—the dynamics of SLRU are exactly
captured by relative priority queue interface.

Greedy-Dual-Size-Frequency The Greedy-Dual-Size
algorithm [10] provides a principled way to trade-off in-
creased object-wise hit ratio with decreased byte-wise hit
ratio by favoring smaller objects. It achieves an even
higher object-wise hit ratio for the Origin cache than
SLRU (Section 2), and is favored for that use case as
the main purpose of Origin cache is to protect backend
storage from excessive IO requests. Greedy-Dual-Size-
Frequency [12] (GDSF) improves GDS by taking fre-
quency into consideration. In GDSF, we update the prior-
ity of an object x to be Lowest+c(x) · n

s(x) upon its n-th
access since it was inserted to the cache, where c(x) is the
programmer-defined penalty for a miss on x, Lowest is
the lowest priority value in the current priority queue,
and s(x) is the size of the object. We use a variant of
GDSF that caps the maximum value of the frequency of
an object to L. L is similar to the number of segments
in SLRU. It prevents the priority value of a frequently

accessed object from blowing up and adapts better to
dynamic workloads. The update rule of our variant of
GDSF algorithm is thus p(x)←Lowest+c(x) · min(L,n)

s(x) .
Because we are maximizing object-wise hit ratio we set
c(x) = 1 for all objects. GDSF uses the absolute priority
queue interface.

Limitations RIPQ also supports many other advanced
caching algorithms like LFU, LRFU [28], LRU-k [40],
LIRS [24], SIZE [1], but there are a few notable excep-
tions that are not implementable with a single RIPQ, e.g.,
MQ [48] and ARC [34]. These algorithms involve mul-
tiple queues and thus cannot be implemented with one
RIPQ. Extending our design to support them with multi-
ple RIPQs coexisting on the same hardware is one of our
future directions. A harder limitation comes from the
update interface, which only allows increasing priority
values. Algorithms that decrease the priority of an object
on its access, such as MRU [13], cannot be implemented
with RIPQ. MRU was designed to cope with scans over
large data sets and does not apply to our use case.

RIPQ does not support delete/overwrite operation be-
cause such operations are not needed for static content
such as photos. But, they are necessary for a general-
purpose read-write cache and adding support for them is
also one of our future directions.

4.4 Implementation of Basic Operations
RIPQ implements the three operations of a regular prior-
ity queue with the data structures described above.

Insert(x, p) RIPQ inserts the object to the active de-
vice block of section k that contains p, i.e., pk > p ≥
pk−1.5 The write will be buffered until that active block
is sealed. Figure 5a shows an insertion.

Increase(x, p) RIPQ avoids moving object x that is
already resident in a device block in the queue. Instead,
RIPQ virtually inserts x into the active virtual block of
section k that contains p, i.e., pk > p ≥ pk−1, and log-
ically removes it from its current location. Because we
remember the virtual block ID in the object entry in the
indexing hash table, these steps are simply implemented
by setting/resetting the virtual block ID of the object en-
try, and updating the size counters of the blocks and sec-

5A minor modification when k = K is 1 = pk ≥ p ≥ pk−1.
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Figure 6: RIPQ internal operations.

tions accordingly. No read/write to flash is performed
during this operation. Figure 5b shows an update.

Delete-min() We maintain a few reserved blocks
on flash for flushing the RAM buffers of device blocks
when they are sealed.6 When the number of reserved
blocks falls below this threshold, the Delete-min()
operation is called implicitly to free up the space on flash.
As shown in Figure 5c, the lowest-priority block in queue
is evicted from queue during the operation. However, be-
cause some of the objects in that blocks might have been
updated to higher places in the queue, they need to be
reinserted to maintain their correct priorities. The rein-
sertion (1) reads out all the keys of the objects in that
block from the block header, (2) queries the index struc-
ture to find whether an object, x, has a virtual location,
and if it has one, (3) finds the corresponding section, k,
of that virtual block and copies the data to the active de-
vice block of that section in RAM, and (4) finally sets the
virtual block field in the index entry to be empty. We call
this whole process materialization of the virtual update.

These reinsertions help preserve caching algorithm fi-
delity, but cause additional writes to flash. These addi-
tional writes cause implementation write amplification,
which is the byte-wise ratio of host-issued writes to those
required to inserted cache misses. RIPQ can explicitly
trade lower caching algorithm fidelity for lower write
amplification by skipping materialization of the virtual
objects whose priority is smaller than a given threshold,
e.g., in the last 5% of the queue. This threshold is the
logical occupancy parameter θ (0 < θ < 1).

Internal operations RIPQ must have neither too many
nor too few insertion points: too few leads to low accu-
racy, and too many leads to high memory usage. To avoid
these situations RIPQ splits a section when it grows too
large and merges consecutive sections when their to-
tal size is too small. This is similar to how B-tree [7]
splits/merges nodes to control the size of the nodes and
the depth of the tree.

A parameter α controls the number of sections of
RIPQ in a principled way. α is in (0,1) and determines

6It is not a critical parameter and we used 10 in our evaluation.

the average size of sections. RIPQ splits a section when
its relative size—i.e., a ratio based on the object count or
byte size—has reached 2α . For example, if α = 0.3 then
a section of [0.4,1.0] would be split to two sections of
[0.4,0.7) and [0.7,1.0] respectively, shown in Figure 6a.
RIPQ merges two consecutive sections if the sum of their
sizes is smaller than α , shown in Figure 6b. These op-
erations ensure there are at most ⌈ 2

α ⌉ sections, and that
each section is no larger than 2α .

No data is moved on flash for a split or merge. Split-
ting a section creates a new active device block with a
write buffer and a new active virtual block. Merging
two sections combines their two active device blocks: the
write buffer of one is copied into the write buffer of the
other. Splitting happens often and is how new sections
are added to queue as objects in the section at the tail are
evicted block-by-block. Merging is rare because it re-
quires the total size of two consecutive sections to shrink
from 2α (α is the size of a new section after a split) to α
to trigger a merge. The amortized complexity of a merge
per operation provided by the priority queue API is only
O( 1

αM ), where M is the number of blocks.

Supporting Absolute Priorities Caching algorithms
such as LFU, SIZE [1], and Greedy-Dual-Size[10] re-
quire the use of absolute priority values when perform-
ing insertion and update. RIPQ supports absolute prior-
ities with a mapping data structure that translates them
to relative priorities. The data structure maintains a dy-
namic histogram that supports insertion/deletion of ab-
solute priority values, and when given an absolute prior-
ities return approximate quantiles, which are used as the
internal relative priority values.

The histogram consists of a set of bins, and we
merge/split bins dynamically based on their relative
sizes, similar to the way we merge/split sections in RIPQ.
We can afford to use more bins than sections for this
dynamic histogram and achieve higher accuracy of the
translation, e.g., κ = 100 bins while RIPQ only uses
K = 8 sections, because the bins only contains abso-
lute priority values and do not require a large dedicated
RAM buffer as the sections do. Consistent sampling of
keys to insert priority values to the histogram can be fur-
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Parameter Symbol Our Value Description and Goal

Block Size B 256MiB To satisfy the sustained high random write throughput.
Number of Blocks M 2400 Flash caching capacity divided by the block size.

Average Section Size α 0.125 To bound the number of sections ≤ ⌈2/α⌉ and the size of each section ≤ 2α ,
trade-off parameter for insertion accuracy and RAM buffer usage.

Insertion Points K 8 Same as the number of sections, controlled by α and proportional to RAM buffer usage.
Logical Occupancy θ 0 Avoid reinsertion of items that will soon be permanently evicted.

Table 3: Key parameters of RIPQ for a 670GiB flash drive currently deployed in Facebook.

ther applied to reduce its memory consumption and in-
sertion/update complexity.

4.5 Other Design Considerations
Parameters Table 3 describes the parameters of RIPQ
and the value chosen for our implementation. The block
size B is chosen to surpass the threshold for a sustained
high write throughput for random writes, and the number
of blocks M is calculated directly based on cache capac-
ity. The number of blocks affects the memory consump-
tion of RIPQ, but this is dominated by the size of the
write buffers for active blocks and the indexing struc-
ture. The number of active blocks equals the number of
insertion points K in the queue. The average section size
α is used by the split and merge operations to bound the
memory consumption and approximation error of RIPQ.

Durability Durability is not a requirement for our
static-content caching use case, but not having to refill
the entire cache after a power loss is a plus. For-
tunately, because the keys and locations of the objects
are stored in the headers of the on-flash device blocks,
all objects that have been saved to flash can be recov-
ered, except for those in the RAM buffers. The ordering
of blocks/sections can be periodically flushed to flash as
well and then used to recover the priorities of the objects.

4.6 Theoretical Analysis
RIPQ is a practical approximate priority queue for im-
plementing caching algorithms on flash, but enjoys some
good theoretical properties as well. In the appendix of a
longer technical report [44] we show RIPQ can simulate
a LRU cache faithfully with 4α of additional space: if
α = 0.125, this would mean RIPQ-based LRU with 50%
additional space would provably include all the objects
in an exact LRU cache. In general RIPQ with adjusted
insertion points can simulate a S-L- LRU cache with 4Lα
of additional space. It is also easy to show the number of
writes to the flash is ≤ I +U , where I is the number of
inserts and U is the number of updates.

Using K sections/insertion points, the complexity of
finding the approximate insertion/update point takes
O(K), and the amortized complexity of split/merge in-
ternal operations is O(1), so the amortized complexity
of RIPQ is only O(K). If we arrange the sections in

a red-black tree, it can be further reduced to O(logK).
In comparison to this, with N objects, an exact imple-
mentation of priority queues using red-black tree would
take O(logN) per operation, and a Fibonacci heap takes
O(logN) per delete-min operation. (K ≪ N, K is typ-
ically 8, N is typically 50 million). The computational
complexity of these exact, tree and heap based data struc-
tures are not ideal for a high performance system. In con-
trast, RIPQ hits the sweet spot with fast operations and
high fidelity, in terms of both theoretical analysis and em-
pirical hit ratios.

5 SIPQ
RIPQ’s buffering for large writes creates a moderate
memory footprint, e.g., 2 GiB DRAM for 8 insertion
points with 256 MiB block size in our implementation.
This is not an issue for servers at Facebook, which are
equipped with 144 GiB of RAM, but limits the use of
RIPQ in memory-constrained environments. To cope
with this issue, we propose the simpler Single Insertion
Priority Queue (SIPQ) framework.

SIPQ uses flash as a cyclic queue and only sequentially
writes to the device for high write throughput with min-
imal buffering. When the cache is full, SIPQ reclaims
device space following the same sequential order. In con-
trast to RIPQ, SIPQ maintains an exact priority queue of
the keys of the cached objects in memory and does not
co-locate similarly prioritized objects physically due to
the single insertion limit on flash. The drawback of this
approach is that reclaiming device space may incur many
reinsertions for SIPQ in order to preserve its priority ac-
curacy. Similar to RIPQ, these reinsertions constitute the
implementation write amplification of SIPQ.

To reduce the implementation write amplification,
SIPQ only includes the keys of a portion of all the cached
objects in the in-memory priority queue, referred to as
the virtual cache, and will only reinsert evicted objects
that are in this cache. All on-flash capacity is referred to
as the physical cache and the ratio between the total byte
size of objects in the virtual cache to the size of the phys-
ical cache is controlled by a logical occupancy param-
eter θ (0 < θ < 1). Because only objects in the virtual
cache are reinserted when they are about to be evicted
from the physical cache, θ provides a trade-off between

8
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priority fidelity and implementation write amplification:
the larger θ , the more objects are in the virtual cache and
the higher fidelity SIPQ has relative to the exact caching
algorithm, and on the other hand the more likely evicted
objects will need to be reinserted and thus higher write
amplification caused by SIPQ. For θ = 1, SIPQ imple-
ments an exact priority queue for all cached data on flash,
but incurs high write amplification for reinsertions. For
θ = 0, SIPQ deteriorates to FIFO with no priority en-
forcement. For θ in between, SIPQ performs additional
writes compared to FIFO but also delivers part of the im-
provement of more advanced caching algorithms. In our
evaluation, we find that SIPQ provides a good trade-off
point for Segmented-LRU algorithms with θ = 0.5, but
does not perform well for more complex algorithms like
GDSF. Therefore, with limited improvement at almost no
additional device overhead, SIPQ can serve as a simple
upgrade for FIFO when memory is tight.

6 Evaluation
We compare RIPQ, SIPQ, and Facebook’s current solu-
tion, FIFO, to answer three key questions:

1. What is the impact of RIPQ and SIPQ’s approxima-
tions of caching algorithms on hit ratios, i.e., what is
the effect on algorithm fidelity?

2. What is the write amplification caused by RIPQ and
SIPQ versus FIFO?

3. What throughput can RIPQ and SIPQ achieve?
4. How does the hit-ratio of RIPQ change as we vary the

number of insertion points?

6.1 Experimental Setup
Implementation We implemented RIPQ and SIPQ
with 1600 and 600 lines of C++ code, respectively, us-
ing the Intel TBB library [22] for the object index and
the C++11 thread library [9] for the concurrency mecha-
nisms. Both the relative and absolute priority interfaces
(enabled by an adaptive histogram translation) are sup-
ported in our prototypes.

Hardware Environment Experiments are run on
servers equipped with a Model A 670GiB flash device
and 144GiB DRAM space. All flash devices are config-
ured with 90% space utilization, leaving the remaining
10% for the FTL.

Framework Parameters RIPQ uses a 256MiB block
size to achieve high write throughput based on our per-
formance study of Model A flash in Section 3. It uses
α = 0.125, i.e., 8 sections, to provide a good trade-off
between the fidelity to the implemented algorithms and
the total DRAM space RIPQ uses for buffering: 256MiB
× 8 = 2GiB, which is moderate for a typical server.

SIPQ also uses the 256MiB block size to keep the
number of blocks on flash the same as RIPQ. Because

SIPQ only issues sequential writes, its buffering size
could be further shrunk without adverse effects. Two
logical occupancy values for SIPQ are used in evalua-
tion: 0.5, and 0.9, each representing a different trade-off
between the approximation fidelity to the exact algorithm
and implementation write amplification. These two set-
tings are noted as SIPQ-0.5 and SIPQ-0.9, respectively.

Caching Algorithms Two families of advanced
caching algorithms, Segmented-LRU (SLRU) [26]
and Greedy-Dual-Size-Frequency (GDSF) [12], are
evaluated on RIPQ and SIPQ. For Segmented-LRU,
we vary the number of segments from 1 to 3, and
report their results as SLRU-1, SLRU-2, and SLRU-3,
respectively. We similarly set L from 1 to 3 for Greedy-
Dual-Size-Frequency, denoted as GDSF-1, GDSF-2,
and GDSF-3. Description of these algorithms and their
implementations on top of the priority queue interface
are explained in Section 4.3. Results of 4 segments or
more for SLRU and L≥ 4 for GDSF are not included due
to their marginal differences in the caching performance.

Facebook Photo Trace Two sets of 15-day sampled
traces collected within the Facebook photo-serving stack
are used for evaluation, one from the Origin cache, and
the other from a large Edge cache facility. The Origin
trace contains over 4 billion requests and 100TB worth
of data, and the Edge trace contains over 600 million re-
quests and 26TB worth of data. To emulate different total
cache capacities in Origin/Edge with the same space uti-
lization of the experiment device and thus controlling for
the effect of FTL, both traces are further down sampled
through hashing: we randomly sample 1

2 , 1
3 , and 1

4 of the
cache key space of the original trace for each experiment
to emulate the effect of increasing the total caching ca-
pacity to 2X , 3X , and 4X . We report experimental results
at 2X because it closely matches our production config-
urations. For all evaluation runs, we use the first 10-day
trace to warm up the cache and measure performance
during the next 5 days. Because both the working set
and the cache size are very large, it takes hours to fill up
the cache and days for the hit ratio to stabilize.

6.2 Experimental Results
This section presents our experimental results regarding
the algorithm fidelity, write amplification, and through-
put of RIPQ and SIPQ with the Facebook photo trace.
We also include the hit ratio, write amplification and
throughput achieved by Facebook’s existing FIFO solu-
tion as a baseline. For different cache sites, only their
target hit ratio metrics are reported, i.e., object-wise hit
ratio for the Origin trace and byte-wise hit ratio for the
Edge trace. Exact algorithm hit ratios are obtained via
simulations as the baseline to judge the approximation
fidelity of implementations on top of RIPQ and SIPQ.

9
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(a) Object-wise hit ratios on Origin trace. (b) Byte-wise hit ratios on Edge trace.
Figure 7: Exact algorithm hit ratios on Facebook trace.

Performance of Exact Algorithms We first investi-
gate hit ratios achieved by the exact caching algorithms
to determine the gains of a fully accurate implementa-
tion. Results are shown in Figure 7.

For object-wise hit ratio on the Origin trace, Figure 7a
shows that GDSF family outperforms SLRU and FIFO
by a large margin. At 2X cache size, GDSF-3 increases
the hit ratio over FIFO by 17%, which translates a to a
23% reduction of backend IOPS. For byte-wise hit ratio
on the Edge trace, Figure 7b shows that SLRU is the best
option: at 2X cache size, SLRU-3 improves the hit ratio
over FIFO by 4.5%, which results in a bandwidth reduc-
tion between Edge and Origin by 10%. GDSF performs
poorly on the byte-wise metric because it down weights
large photos. Because different algorithms perform best
at different sites with different performance metrics, flex-
ible frameworks such as RIPQ make it easy to optimize
caching policies with minimal engineering effort.

Approximation Fidelity Exact algorithms yield con-
siderable gains in our simulation, but are also challeng-
ing to implement on flash. RIPQ and SIPQ make it sim-
ple to implement the algorithms on flash, but do so by
approximating the algorithms. To quantify the effects of
this approximation we ran experiments presented in Fig-
ures 8a and 8d. These figures present the hit ratios of dif-
ferent exact algorithms (in simulations) and their approx-
imate implementations on flash with RIPQ, SIPQ-0.5,
and SIPQ-0.9 (in experiments) at 2X cache size setup
from Figure 7. The implementation of FIFO is the same
as the exact algorithm, so we only report one number. In
general, if the hit ratio of an implementation is similar to
the exact algorithm the framework provides high fidelity.

RIPQ consistently achieves high approximation fideli-
ties for the SLRU family, and its hit ratios are less than
0.2% different for object-wise/byte-wise metric com-
pared to the exact algorithm results on Origin/Edge trace.
For the GDSF family, RIPQ’s algorithm fidelity becomes
lower as the algorithm complexity increases. The great-
est “infidelity” seen for RIPQ is a 5% difference on the
Edge trace for GDSF-1. Interestingly, for the GDSF fam-
ily, the infidelity generated by RIPQ improves byte-wise
hit ratio—the largest infidelity was a 5% improvement on

byte-wise hit-ratio compared to the exact algorithm. The
large gain on byte-wise hit ratio can be explained by the
fact that the exact GDSF algorithm is designed to trade
byte-wise hit ratio for object-wise hit ratio through fa-
voring small objects, and its RIPQ approximation shifts
this trade-off back towards a better byte-wise hit-ratio.
Not shown in the figures (due to space limitation) is that
RIPQ-based GDSF family incurs about 1% reduction in
object-wise hit ratio. Overall, RIPQ achieves high algo-
rithm fidelity on both families of caching algorithms that
perform the best in our evaluation.

SIPQ also has high fidelity when the occupancy pa-
rameter is set to 0.9, which means 90% of the caching
capacity is managed by the exact algorithm. SIPQ-0.5,
despite only half of the cache capacity being managed
by the exact algorithm, still achieves a relatively high
fidelity for SLRU algorithms: it creates a 0.24%-2.8%
object-wise hit ratio reduction on Origin, and 0.3%-0.9%
byte-wise hit ratio reduction on Edge. These algorithms
tend to put new and recently accessed objects towards the
head of the queue, which is similar to the way SIPQ in-
serts and reinserts objects at the head of the cyclic queue
on flash. However, SIPQ-0.5 provides low fidelity for the
GDSF family, causing object-wise hit ratio to decrease
on Origin and byte-wise hit ratio to increase on Edge.
Within these algorithms, objects may have diverse prior-
ity values due to their size differences even if they enter
the cache at the same time, and SIPQ’s single insertion
point design results in a poor approximation.

Write Amplification Figure 8b and 8e fur-
ther show the combined write amplification (i.e.,
FT L× implementation) of different frameworks. RIPQ
consistently achieves the lowest write amplification,
with an exception for SLRU-1 where SIPQ-0.5 has the
lowest value for both traces. This is because SLRU-1
(LRU) only inserts to one location at the queue head,
which works well with SIPQ, and the logical occupancy
0.5 further reduces the reinsertion overhead. Overall, the
write amplification of RIPQ is largely stable regardless
of the complexity of the caching algorithms, ranging
from 1.17 to 1.24 for the SLRU family, and from 1.14 to
1.25 for the GDSF family.

10



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 383

(a) Object-wise hit ratio (Origin) (b) Write amplification (Origin) (c) IOPS throughput (Origin)

(d) Byte-wise hit ratio (Edge) (e) Write amplification (Edge) (f) IOPS throughput (Edge)

Figure 8: Performance of RIPQ, SIPQ, and FIFO on Origin and Edge.

SIPQ-0.5 achieves moderately low write amplifica-
tions but with lower fidelity for complex algorithms.
Its write amplification also increases with the algorithm
complexity. For SLRU, the write implementation for
SIPQ-0.5 rises from 1.08 for SLRU-1 to 1.52 for SLRU-
3 on Origin, and from 1.11 to 1.50 on Edge. For GDSF,
the value ranges from 1.33 for GDSF-1 to 1.37 to GDSF-
3 on Origin, and from 1.36 to 1.39 on Edge. Results for
SIPQ-0.9 observe a similar trend for each family of algo-
rithms, but with a much higher write amplification value
for GDSF around 5-6.

Cache Throughput Throughput results are shown in
Figure 8c and 8f. RIPQ and SIPQ-0.5 consistently
achieve over 20 000 requests per second (rps) on both
traces, but SIPQ-0.9 has considerably lower throughput,
especially for the GDSF family of algorithms. FIFO has
slightly higher throughput than RIPQ based SLRU, al-
though the latter has higher byte hit ratio and correspond-
ingly fewer writes from misses.

This performance is highly related to the write ampli-
fication results because in all three frameworks (1) work-
loads are write-heavy with below 63% hit ratios, and our
experiments are mainly write-bounded with a sustained
write-throughput around 530 MiB/sec, (2) write am-
plification proportionally consumes the write through-
put, which further throttles the overall throughput. This
is why SIPQ-0.9 often with the highest write amplifi-
cation has the lowest throughput, and also why RIPQ
based SLRU has lower throughput than FIFO. However,
RIPQ/SIPQ-0.5 still provides high performance for our
use case, with RIPQ paticularly achieving over 24 000
rps on both traces. The slightly lower throughput com-
paring to FIFO (less than 3 000 rps difference) is well
worth the hit-ratio improvement which translates to a de-

crease of backend I/O load and a decrease of bandwidth
between Edge and Origin.

Sensitivity Analysis on Number of Insertion Points
Figure 9 shows the effect of varying the number of
insertion points in RIPQ on approximation accuracy.
The number of insertion points, K, is roughly inversely
proportional to α , so we vary K to be approximately
2,4,8,16, and 32, by varying α from 1

2 ,
1
4 ,

1
8 ,

1
16 to

1
32 . We measure approximation accuracy empirically
through the object-wise hit-ratios of RIPQ based SLRU-
3 and GDSF-3 on the origin trace with 2X cache size.

Figure 9: Object-wise hit ratios sensitivity on approx-
imate number of insertion points.

When K ≈ 2 (α = 1
2 ), a section in RIPQ can grow to

the size of the entire queue before it splits. In this case
RIPQ effectively degenerates to FIFO with equivalent
hit-ratios. The SLRU-3 hit ratio saturates quickly when
K ! 4, while GDSF-3 reaches its highest performance
only when K ! 8. GDSF-3 uses many more insertion
points in an exact priority queue than SLRU-3 and RIPQ
thus needs more insertion points to effectively colocate
content with similar priorities. Based on this analysis we
have chosen α = 1

8 for RIPQ in our experiments.
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7 Related Work
To the best of our knowledge, no prior work provides
a flexible framework for efficiently implementing ad-
vanced caching algorithms on flash. Yet, there is a large
body of related work in several heavily-researched fields.

Flash-based Caching Solutions Flash devices have
been applied in various caching solutions for their large
capacities and high I/O performance [2, 4, 21, 23, 27,
31, 35, 37, 39, 42, 46]. To avoid their poor handling
of small random write workloads, previous studies ei-
ther use sequential eviction akin to FIFO [2], or only
perform coarse-grained caching policies at the unit of
large blocks [21, 31, 46]. Similarly, SIPQ and RIPQ
also achieve high write throughputs and low device
overheads on flash through sequential writes and large
aligned writes, respectively. In addition, they allow
efficient implementations of advanced caching policies
at a fine-grained object unit, and our experience show
that photo caches built on top of RIPQ and SIPQ yield
significant performance gains at Facebook. While our
work mainly focuses on the support of eviction part of
caching operations, techniques like selective insertions
on misses [21, 46] are orthogonal to RIPQ and can be
applied to further reduce the data written to flash.7

RAM-based Advanced Caching Caching has been an
important research topic since the early days of com-
puter science and many algorithms have been proposed
to better capture the characteristics of different work-
loads. Some well-known features include recency (LRU,
MRU [13]), frequency (LFU [33]), inter-reference time
(LIRS [24]), and size (SIZE [1]). There have also been
a plethora of more advanced algorithms that consider
multiple features, such as Multi-Queue [48] and Seg-
mented LRU (SLRU) [26] for both recency and fre-
quency, Greedy-Dual [47] and its variants like Greedy-
Dual-Size [10] and Greedy-Dual-Size-Frequency [12]
(GDSF) using a more general method to compose the
expected miss penalty and minimize it.

While more advanced algorithms can potentially yield
significant performance improvements, such as SLRU
and GDSF for Facebook photo workload, a gap still re-
mains for efficient implementations on top of flash de-
vices because most algorithms are hardware-agnostic:
they implicitly assume data can be moved and overwrit-
ten with little overhead. Such assumptions do not hold
on flash due to its asymmetric performance for reads and
writes and the performance deterioration caused by its
internal garbage collection.

Our work, RIPQ and SIPQ, bridges this gap. They
provide a priority queue interface to allow easy imple-

7We tried such techniques on our traces, but found the hit ratio
dropped because of the long-tail accesses for social network photos.

mentation of many advanced caching algorithms, provid-
ing similar caching performance while generating flash-
friendly workloads.

Flash-based Store Many flash-based storage systems,
especially key-value stores have been recently pro-
posed to work efficiently on flash hardware. Systems
such as FAWN-KV [6], SILT [32], LevelDB [16], and
RocksDB [14] group write operations from an upper
layer and only flush to the device using sequential writes.
However, they are designed for read-heavy workloads
and other performance/application metrics such as mem-
ory footprints and range-query efficiencies. As a result,
these systems make trade-offs such as conducting on-
flash data sorting and merges, that yield high device over-
head for write-heavy workloads. We have experimented
with using RocksDB as an on-flash photo store for our
application, but found it to have excessively high write
amplification (~5 even when we allocated 50% of the
flash space to garbage collection). In contrast, RIPQ and
SIPQ are specifically optimized for a (random) write-
heavy workload and only support caching-required in-
terfaces, and as a result have low write amplification.

Studies on Flash Performance and Interface While
flash hardware itself is also an important topic, works
that study the application perceived performance and in-
terface are more related to our work. For instance, previ-
ous research [8, 25, 36, 43] that reports the random write
performance deterioration on flash helps verify our ob-
servations in the flash performance study.

Systematic approaches to mitigate this specific prob-
lem have also been previously proposed at different lev-
els, such as separating the treatment of cold and hot data
in the FTL by LAST [29], and the similar technique in
filesystem by SFS [36]. These approaches work well for
skewed write workloads where only a small subset of the
data is hot and updated often, and thus can be grouped
together for garbage collection with lower overhead. In
RIPQ, cached contents are explicitly tagged with prior-
ity values that indicate their hotness, and are co-located
within the same device block if their priority values are
close. In a sense, such priorities provide a prior for iden-
tifying content hotness.

While RIPQ (and SIPQ) runs on unmodified com-
mercial flash hardware, recent studies [31, 41] which
co-design flash software/hardware could further benefit
RIPQ by reducing its memory consumption.

Priority Queue Both RIPQ and SIPQ rely on the pri-
ority queue abstract data type and the design of priority
queues with different performance characteristics have
been a classic topic in theoretical computer science as
well [11, 15, 18]. Instead of building an exact priority
queue, RIPQ uses an approximation to trade algorithm
fidelity for flash-aware optimization.
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8 Conclusion
Flash memory, with its large capacity, high IOPS, and
complex performance characteristics, poses new oppor-
tunities and challenges for caching. In this paper we
present two frameworks, RIPQ and SIPQ, that imple-
ment approximate priority queues efficiently on flash.
On top of them, advanced caching algorithms can be eas-
ily, flexibly, and efficiently implemented, as we demon-
strate for the use case of a flash-based photo cache at
Facebook. RIPQ achieves high fidelity and low write am-
plification for the SLRU and GDSF algorithms. SIPQ is
a simpler design, requires less memory and still achieves
good results for simple algorithms like LRU. Experi-
ments on both the Facebook Edge and Origin traces show
that RIPQ can improve hit ratios by up to ~20% over the
current FIFO system, reducing bandwidth consumption
between the Edge and Origin, and reducing I/O opera-
tions to backend storage.
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