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Photo Caches

Close to users
Reduce backbone traffic

Co-located with backend
Reduce backend IO

Photo Serving Stack
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An Analysis of
Facebook Photo Caching
[Huang et al. SOSP’13]

,‘QAdvanced caching
algorithms help!
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Greedy-Dual-Size-Frequency-3:
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In Practice Photo Serving Stack
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Theory Practice

Advanced caching helpt | It to implement on flash:
« 23% fewer backend IC ¥ 20 still used

e 10% less backbone trafi.

Restricted Insertion Priority Queue:
efficiently implement advanced
caching algorithms on flash




Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?
— Why use priority queue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend IOs



Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?
— Write pattern of FIFO and LRU

 How RIPQ solves this problem?
— Why use priority queue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend IOs



FIFO Does Sequential Writes

Cache space of FIFO
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FIFO Does Sequential Writes
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FIFO Does Sequential Writes

Cache space of FIFO
A

| |
Head Tail

Evicted

No random writes needed for FIFO
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LRU Needs Random Writes

Cache space of LRU
A

Locations on flash # Locations in LRU queue
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LRU Needs Random Writes

Cache space of LRU
A

u»u»u»u»u»u»u»u»u»u»u»u»u»u»u»u

Non-contiguous
on flash

Random writes needed to reuse space
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Why Care About Random Writes?

* Write-heavy workload
— Long tail access pattern,

moderate hit ratio

— Each miss triggers a write to cache

« Small random writes are harmful for flash

—e.g. Min et al. FAST’12
— High write amplification -

" Low write throughput

| Short device lifetime



What write size do we need?

« Large writes

— High write throughput at high utilization
— 16~32MiB in Min et al. FAST’2012

« What’s the trend since then?

— Random writes tested for 3 modern devices
— 128~512MiB needed now

100MiB+ writes needed for efficiency



Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation
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RIPQ Architecture
(Restricted Insertion Priority Queue)

Advanced Caching Policy }

(SLRU, GDSF ...)
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Caching algorithms
approximated as well

Efficient caching
on flash



RIPQ Architecture

Advanced Caching Policy

(SLRU, GDSF ...)
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Priority Queue API

L) L} L}

Approximate Priority Queue }4

Flash-friendly Workloads =
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(Restricted Insertion Priority Queue)

|

» Restricted insertion
->Section merge/split

-Large writes
~Lazy updates
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Priority Queue API

* No single best caching policy

« Segmented LRU [Karedla’94]

— Reduce both backend 10 and backbone traffic
— SLRU-3: best algorithm for Edge so far

« Greedy-Dual-Size-Frequency [Cherkasova’98]
— Favor small objects
— Further reduces backend 10
— GDSF-3: best algorithm for Origin so far



Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
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Hit A again
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

A
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

Head
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Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

 Write workload more random than LRU
* Operations similar to priority queue
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Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache‘space P 0.0

Head Tail

Miss object: insert(x, p) &
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Relative Priority Queue for
Advanced Caching Algorithms

1.0 p’ Cache‘space 0.0

Head v s EREL

Hit object: increase(x, p’)

30



Head

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache space

Implicit demotion on insert/increase:
* Object with lower priorities
moves towards the tall

Wm Tail
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Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cachelspace 0.0

Head T T’ - ."q:)

Tail

Evicted
Evict from queue talil

Relative priority queue captures the
dynamics of many caching algorithms!
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RIPQ Design: Large Writes

« Large caching capacity
* High write throughput



RIPQ Design:
Restricted Insertion Points

GLOLOL0LOL0, 0,0

« Exact priority queue

* Insert to any block in the queue
 Each block needs a separate buffer
 Whole flash space buffered in RAM!




RIPQ Design:
Restricted Insertion Points

GL0LO,0L0L0, 0,0

Solution: restricted insertion points



Section is Unit for Insertion

1..0.6 0.6 ...0.35 0.35..0

Section Section Section
Head | OO OO HOOQ| i

O Active block with O Sealed block
RAM buffer on flash

Each section has one insertion point



Section is Unit for Insertion

@62 0.62 .. 0.33 O.SSD

/\

Section Section

Section

Head O—*O»O

+1)> > Tall
r_

insert(x, 0.55)

Insert procedure

* Find corresponding section

« Copy data into active block

« Updating section priority range



Section is Unit for Insertion
i B of @

/ 2/62 0.62 .. 0.33 0.33..0
S¢cHon Section Section
et |CFOOHO-OHOOO)| i

O Active block with O Sealed block
RAM buffer on flash

Relative orders within one section not guaranteed!



Head

Section size controls approximation error
, approximation error
, RAM buffer

Trade-off In Section Size
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Section

0.62 .. 0.33

Section
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RIPQ Design: Lazy Update

Naive approach: copy to the
corresponding active block

Section Section Section
Head | @O OO HOOO| i
/

AN
~—_ X —

increase(x, 0.9)

Problem with naive approach
« Data copying/duplication on flash



RIPQ Design: Lazy Update

Section Section Section

Head | OO HOQHOOO| i

Solution: use virtual block to
track the updated location!



RIPQ Design: Lazy Update

Section Section Section
Head | OO0 HOOHOOO |
G Ol G O
Virtual Blocks

Solution: use virtual block to
track the updated location!



Head

Virtual Block Remembers
Update Location

Section Section Section
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No data written during virtual update

Tail



Actual Update During Eviction

X now at tail block.

Section Section Section /
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Actual Update During Eviction

Section Section Section

Head | OO @O = OO |
’-\ "\ /-\ ’-\ "
(\_/' (\_l' (\-_:l/' (\_/' (\_/'

Copy data to W
the active block

Always one copy of data on flash



RIPQ Design

* Relative priority queue API

* RIPQ design points
— Large writes
— Restricted insertion points
— Lazy update

» Static caching
— Photos are static



Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation
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Evaluation Questions

* How much RAM buffer needed?

 How good is RIPQ’s approximation?

« What’s the throughput of RIPQ?



Evaluation Approach

e Real-world Facebook workloads
— Origin

« 670 GiB flash card
— 256MiB block size
—90% utilization

 Baselines
— FIFO



RIPQ Needs Small Number of Insertion Points
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RIPQ Needs Small Number of Insertion Points
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RIPQ Needs Small Number of Insertion Points
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Insertion points

You don’t need much RAM buffer (2GiB)!
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Object-wise hit-ratio (%)

RIPQ Has High Fidelity

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO



Object-wise hit-ratio (%)

RIPQ Has High Fidelity

FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO



RIPQ Has High Fidelity

35 Exact

Wl | 1 1 | N

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Object-wise hit-ratio (%)
w
o

RIPQ achieves <0.5% difference for all algorithms
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Object-wise hit-ratio (%)

RIPQ Has High Fidelity

+16%

40

35 Exact
30 M RIPQ
5 I I I ™ FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

+16% hit-ratio = 23% fewer backend IOs
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RIPQ Has High Throughput
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‘RIPQ throughput comparable to FIFO (=10% diff.) ‘
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Related Works

RAM-based advanced caching
SLRU(Karedla’94), GDSF(Young’94, Cao’97, Cherkasova’01),
SIZE(Abrams’96), LFU(Maffeis’93), LIRS (Jiang’02), ...

RIPQ enables their use on flash

Flash-based caching solutions
Facebook FlashCache, Janus(Albrecht ’13), Nitro(Li’13),
OP-FCL(Oh’12), FlashTier(Saxena’12), Hec(Yang'13), ...

RIPQ supports advanced algorithms

Flash performance
Stoica’09, Chen’09, Bouganim’09, Min’12, ...

Trend continues for modern flash cards
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RIPQ

* First framework for advanced caching on flash
— Relative priority queue interface
— Large writes
— Restricted insertion points
— Lazy update
— Section merge/split

« Enables SLRU-3 & GDSF-3 for Facebook photos

— 10% less backbone traffic
— 23% fewer backend IOs



