RIPQ: Advanced Photo Caching
on Flash for Facebook

Linpeng Tang (Princeton)
Qi Huang (Cornell & Facebook)
Wyatt Lloyd (USC & Facebook)

Sanjeev Kumar (Facebook)

Kai Li (Princeton)

ﬁ facebook.
USC 1

"B PRINCETON
N UNIVERSITY

2 Billion” Photos

Photo Serving Stack
Shared Daily oo Serving Stac

@
O

k Zuckerberg @ Following | Mess:

About ~ Friends Photos More +

send him a message

Founder and CEO at Facebook . afluckerberg
Shaoied Campussr Sclence ot Harvard Today Prisflll and | are announcing a $75 million contribution to
on Francisco General Hospital.

We believe everyone deserves access to high qulty health care. The
Generalis the main public hospital in San Francisco, and it is an

From Dobbs Ferry, New York important safety net for our community. More than 70% of the families
S0y it serves are uninsured or underinsured. It s 0pen to anyone who
You've followed him since July 2013 fves, works in or visits the Gty.
Followed by 31,462,468 people P src T Gt e B st o of
e More

& Sneryl Sandberg, Michael Aington, B8 Hoang Top Comments:
Durang and 120,829 others like tis.

13,502 shares

k|-

et Cashen Thak you o muc Asan N SFGH can
v boweb i movey aare & o oy
more importantly the patients!!!

Yankees

View more comments

e l Mark Zuckerbarg

H@E[e et

9 Beyonod
e he yoars. #triendsday

The Al
American

st

Storage
Backend

* Facebook 2014 Q4 Report

Photo Caches

Close to users
Reduce backbone traffic

Co-located with backend
Reduce backend IO

Photo Serving Stack

[Edge Cache J

N

Flash

|

Origin Cache

/

|

Storage
Backend

|

An Analysis of
Facebook Photo Caching
[Huang et al. SOSP’13]

,‘QAdvanced caching
algorithms help!

Photo Serving Stack

[Edge Cache J

N

Segmented LRU-3: Flash
10% less backbone traffic /

[Origin Cache }

Greedy-Dual-Size-Frequency-3:
23% fewer backend I0s

Storage
Backend

In Practice Photo Serving Stack

Ve &@%@
7 i

[Edge Cache J

N

FIFO was still used Flash
No known way to implement /
advanced algorithms efficiently Origin Cache

Storage
Backend

Theory Practice

Advanced caching helpt | It to implement on flash:
« 23% fewer backend IC ¥ 20 still used

e 10% less backbone trafi.

Restricted Insertion Priority Queue:
efficiently implement advanced
caching algorithms on flash

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?
— Why use priority queue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend IOs

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?
— Write pattern of FIFO and LRU

 How RIPQ solves this problem?
— Why use priority queue?
— How to efficiently implement one on flash?

 Evaluation

— 10% less backbone traffic
— 23% fewer backend IOs

FIFO Does Sequential Writes

Cache space of FIFO

A
| \

Head (I I Tail

FIFO Does Sequential Writes

Cache space of FIFO

A
| \

Head (I I Tail

Miss

10

FIFO Does Sequential Writes

Cache space of FIFO

A
| \

Head (AT 6.0 M - Tail

T
Hit

N
9

11

FIFO Does Sequential Writes

Cache space of FIFO
A

| |
Head Tail

Evicted

No random writes needed for FIFO

12

LRU Needs Random Writes

Cache space of LRU
A

Locations on flash # Locations in LRU queue

13

LRU Needs Random Writes

Cache space of LRU
A

u»u»u»u»u»u»u»u»u»u»u»u»u»u»u»u

Non-contiguous
on flash

Random writes needed to reuse space

14

Why Care About Random Writes?

* Write-heavy workload
— Long tail access pattern,

moderate hit ratio

— Each miss triggers a write to cache

« Small random writes are harmful for flash

—e.g. Min et al. FAST’12
— High write amplification -

" Low write throughput

| Short device lifetime

What write size do we need?

« Large writes

— High write throughput at high utilization
— 16~32MiB in Min et al. FAST’2012

« What’s the trend since then?

— Random writes tested for 3 modern devices
— 128~512MiB needed now

100MiB+ writes needed for efficiency

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation

17

RIPQ Architecture
(Restricted Insertion Priority Queue)

Advanced Caching Policy }

(SLRU, GDSF ...)

| 1]

Priority Queue API

.

)

/

L) L} L}

Approximate Priority Queue

Flash-friendly Workloads

v v

RaM| Fash

J

RIPQ/

Caching algorithms
approximated as well

Efficient caching
on flash

RIPQ Architecture

Advanced Caching Policy

(SLRU, GDSF ...)

| 1]

.

Priority Queue API

L) L} L}

Approximate Priority Queue }4

Flash-friendly Workloads =

v v

RaM| Fash

J

(Restricted Insertion Priority Queue)

|

» Restricted insertion
->Section merge/split

-Large writes
~Lazy updates

RIPQ/

Priority Queue API

* No single best caching policy

« Segmented LRU [Karedla’94]

— Reduce both backend 10 and backbone traffic
— SLRU-3: best algorithm for Edge so far

« Greedy-Dual-Size-Frequency [Cherkasova’98]
— Favor small objects
— Further reduces backend 10
— GDSF-3: best algorithm for Origin so far

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3

A
| \

Head m Tail

Miss

21

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
A

|

|
L3 L2 L1
Head Tail

Miss é

22

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
A

| \
L3 L2 L
Head Tail

Hit &)

23

Segmented LRU

 Concatenation of K LRU caches

Cache space of SLRU-3
A

| \
L3 L2 L1
Head o)) e S S Tail

Hit A again

24

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

A
| \

Head (I I Tail

25

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

A
| \

Head (I I Tail

26

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

Head

27

Greedy-Dual-Size-Frequency

* Favoring small objects

Cache space of GDSF-3

 Write workload more random than LRU
* Operations similar to priority queue

28

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache‘space P 0.0

Head Tail

Miss object: insert(x, p) &

29

Relative Priority Queue for
Advanced Caching Algorithms

1.0 p’ Cache‘space 0.0

Head v s EREL

Hit object: increase(x, p’)

30

Head

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cache space

Implicit demotion on insert/increase:
* Object with lower priorities
moves towards the tall

Wm Tail

31

Relative Priority Queue for
Advanced Caching Algorithms

1.0 Cachelspace 0.0

Head T T’ - ."q:)

Tail

Evicted
Evict from queue talil

Relative priority queue captures the
dynamics of many caching algorithms!

32

RIPQ Design: Large Writes

« Large caching capacity
* High write throughput

RIPQ Design:
Restricted Insertion Points

GLOLOL0LOL0, 0,0

« Exact priority queue

* Insert to any block in the queue
 Each block needs a separate buffer
 Whole flash space buffered in RAM!

RIPQ Design:
Restricted Insertion Points

GL0LO,0L0L0, 0,0

Solution: restricted insertion points

Section is Unit for Insertion

1..0.6 0.6 ...0.35 0.35..0

Section Section Section
Head | OO OO HOOQ| i

O Active block with O Sealed block
RAM buffer on flash

Each section has one insertion point

Section is Unit for Insertion

@62 0.62 .. 0.33 O.SSD

/\

Section Section

Section

Head O—*O»O

+1)> > Tall
r_

insert(x, 0.55)

Insert procedure

* Find corresponding section

« Copy data into active block

« Updating section priority range

Section is Unit for Insertion
i B of @

/ 2/62 0.62 .. 0.33 0.33..0
S¢cHon Section Section
et |CFOOHO-OHOOO)| i

O Active block with O Sealed block
RAM buffer on flash

Relative orders within one section not guaranteed!

Head

Section size controls approximation error
, approximation error
, RAM buffer

Trade-off In Section Size

1..0.62

Section

0.62 .. 0.33

Section

C

0,0

N

C

O

0.33..0

Section

Sections
Sections

N

C

OO

Tail

RIPQ Design: Lazy Update

Naive approach: copy to the
corresponding active block

Section Section Section
Head | @O OO HOOO| i
/

AN
~—_ X —

increase(x, 0.9)

Problem with naive approach
« Data copying/duplication on flash

RIPQ Design: Lazy Update

Section Section Section

Head | OO HOQHOOO| i

Solution: use virtual block to
track the updated location!

RIPQ Design: Lazy Update

Section Section Section
Head | OO0 HOOHOOO |
G Ol G O
Virtual Blocks

Solution: use virtual block to
track the updated location!

Head

Virtual Block Remembers
Update Location

Section Section Section
O = OO — OO0
=N =N ek " kN kN
(\+_1/' (_l' (_/'," (_/' (_/'

___________ X - increase(x, 0.9)

No data written during virtual update

Tail

Actual Update During Eviction

X now at tail block.

Section Section Section /

Head C):Q»Q > (OO Q{){S Tail

\ Lok ~=a\ (’-\ ("\ ’,'
(_/' (s_/' (_/' _/' _l":'
\ r
\
\

~
~ -
~ -

Actual Update During Eviction

Section Section Section

Head | OO @O = OO |
’-\ "\ /-\ ’-\ "
(_/' (_l' (\-_:l/' (_/' (_/'

Copy data to W
the active block

Always one copy of data on flash

RIPQ Design

* Relative priority queue API

* RIPQ design points
— Large writes
— Restricted insertion points
— Lazy update

» Static caching
— Photos are static

Outline

 Why are advanced caching algorithms
difficult to implement on flash efficiently?

 How RIPQ solves this problem?

 Evaluation

47

Evaluation Questions

* How much RAM buffer needed?

 How good is RIPQ’s approximation?

« What’s the throughput of RIPQ?

Evaluation Approach

e Real-world Facebook workloads
— Origin

« 670 GiB flash card
— 256MiB block size
—90% utilization

 Baselines
— FIFO

RIPQ Needs Small Number of Insertion Points

45
=
o 40
e
©
0
e
£ 35
Q
2
S 30
L
3
5 25
O

Insertion points

Exact SLRU-3

FIFO

+16%
--------------------------- Exact GDSF-3
+6°/o
2 4 8 16 32

50

RIPQ Needs Small Number of Insertion Points

45

S S et = = Exact GDSF-3
o 40

]

©

0

)

s 3 Py Exact SLRU-3
O

o A =

S 30 ——SLRU-3

X

o

2 5 FIFO

o 2 4 8 16 32

Insertion points

51

RIPQ Needs Small Number of Insertion Points

45 _"""""""""'"""""""f"\' """"""""""""""""
X Exact GDSF-3
O
= ==GDSF-3
| -
=
c Exact SLRU-3
]
R
> =O=SLRU-3
L
(&)
D == FIFO
0
@)

Insertion points

You don’t need much RAM buffer (2GiB)!

52

Object-wise hit-ratio (%)

RIPQ Has High Fidelity

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Object-wise hit-ratio (%)

RIPQ Has High Fidelity

FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

RIPQ Has High Fidelity

35 Exact

Wl | 1 1 | N

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

Object-wise hit-ratio (%)
w
o

RIPQ achieves <0.5% difference for all algorithms

55

Object-wise hit-ratio (%)

RIPQ Has High Fidelity

+16%

40

35 Exact
30 M RIPQ
5 I I I ™ FIFO

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3 FIFO

+16% hit-ratio = 23% fewer backend IOs

56

RIPQ Has High Throughput

fg 30000
L 25000
O

@ 20000
é_ 15000
g 10000
%’ 5000
= 0
|_

HHTT

SLRU-1 SLRU-2 SLRU-3 GDSF-1 GDSF-2 GDSF-3

FIFO

W RIPQ

‘RIPQ throughput comparable to FIFO (=10% diff.) ‘

57

Related Works

RAM-based advanced caching
SLRU(Karedla’94), GDSF(Young’94, Cao’97, Cherkasova’01),
SIZE(Abrams’96), LFU(Maffeis’93), LIRS (Jiang’02), ...

RIPQ enables their use on flash

Flash-based caching solutions
Facebook FlashCache, Janus(Albrecht ’13), Nitro(Li’13),
OP-FCL(Oh’12), FlashTier(Saxena’12), Hec(Yang'13), ...

RIPQ supports advanced algorithms

Flash performance
Stoica’09, Chen’09, Bouganim’09, Min’12, ...

Trend continues for modern flash cards

58

RIPQ

* First framework for advanced caching on flash
— Relative priority queue interface
— Large writes
— Restricted insertion points
— Lazy update
— Section merge/split

« Enables SLRU-3 & GDSF-3 for Facebook photos

— 10% less backbone traffic
— 23% fewer backend IOs

