
Incorporating Occupancy into Frequent Pattern Mining
for High Quality Pattern Recommendation

Linpeng Tang13∗, Lei Zhang23∗, Ping Luo3 and Min Wang3

1 Shanghai Jiao Tong University ,2 University of Science and Technology of China ,3 HP Labs China
{Linpeng.tang, lei.zhang7, ping.luo, min.wang6}@hp.com

ABSTRACT
Mining interesting patterns from transaction databases has attracted
a lot of research interest for more than a decade. Most of those stud-
ies use frequency, the number of times a pattern appears in a trans-
action database, as the key measure for pattern interestingness. In
this paper, we introduce a new measure of pattern interestingness,
occupancy. The measure of occupancy is motivated by some real-
world pattern recommendation applications which require that any
interesting pattern X should occupy a large portion of the trans-
actions it appears in. Namely, for any supporting transaction t of
pattern X, the number of items in X should be close to the to-
tal number of items in t. In these pattern recommendation appli-
cations, patterns with higher occupancy may lead to higher recall
while patterns with higher frequency lead to higher precision. With
the definition of occupancy we call a pattern dominant if its occu-
pancy is above a user-specified threshold. Then, our task is to iden-
tify the qualified patterns which are both frequent and dominant.
Additionally, we also formulate the problem of mining top-k quali-
fied patterns: finding the qualified patterns with the top-k values of
any function (e.g. weighted sum of both occupancy and support).

The challenge to these tasks is that the monotone or anti-monotone
property does not hold on occupancy. In other words, the value
of occupancy does not increase or decrease monotonically when
we add more items to a given itemset. Thus, we propose an algo-
rithm called DOFIA (DOminant and Frequent Itemset mining Al-
gorithm), which explores the upper bound properties on occupancy
to reduce the search process. The tradeoff between bound tightness
and computational complexity is also systematically addressed. Fi-
nally, we show the effectiveness of DOFIA in a real-world applica-
tion on print-area recommendation for Web pages, and also demon-
strate the efficiency of DOFIA on several large synthetic data sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing

∗This work was done when Linpeng and Lei were visiting HP Labs
China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

Keywords
Frequent pattern mining, Constraint-based mining, Frequent and
Dominant pattern, DOFIA

1. INTRODUCTION
Frequent pattern mining has been attracting abundant research

interest for over a decade. Most of those studies use frequency,
namely the number of times a pattern appears in a transaction database,
as the key measure for pattern interestingness. In this paper we in-
troduce a new measure, occupancy, which considers the degree that
a pattern occupies the items in its supporting transactions. Specif-
ically, we prefer the pattern that occupies a large portion of the
transactions it appears in. This new measure of occupancy is moti-
vated by some real-world applications of pattern recommendation
and we describe two of the such applications below.

The first application is on print-area recommendation for Web
pages. We often find that the printout generated by a Web browser’s
print function is far from satisfactory since it usually contains a
large portion of irrelevant content (e.g., navigation menu, advertise-
ments, and related links). To solve this problem, HP provides Smart
Print1 that contains a user-friendly interface so that a user can eas-
ily select her interested print areas. Such selections are stored in
print logs with user consent. If we view each content clip (a se-
lected content area) as an item and all the selected clips by a user
on a given Web page as a transaction of items, the print log data
from all users form a transaction database. Our task is to recom-
mend an itemset (i.e., a set of content clips) in a given Web page
to users based on this database. Naturally, the itemset we recom-
mend should occur frequently to reflect the interests of most users.
Equally important is the completeness of the itemset: it should oc-
cupy a large portion of the transactions it appears in so that the
user would not feel that the recommendation is missing too much
relevant content.

Another motivating application is on investment portfolio rec-
ommendation. Assume that we have a transaction database that
contains a large set of high-quality and diversified investment port-
folios. Each transaction represents the set of financial assets (e.g.,
stocks, bonds,funds etc.) owned by an experienced investor. Our
goal is to mine the “interesting patterns" (i.e., high-quality and
diversified patterns) from the database to recommend to new in-
vestors. Similarly, we prefer the investment patterns that appear
frequently in the database. More importantly, a good investment
portfolio usually works as an entirety to achieve investment bal-
ance and reduce risks. So we would expect that a good investment
pattern should cover a large portion of the transactions in which
it appears. For example, we have two patterns X,Y of equal fre-

1A Web browser extension, www.hp.com/go/smartprint

75

quency. If X covers 90% assets of its supporting transactions while
Y only covers 30%, it is natural to consider X as a much better in-
vestment pattern. Thus, the occupancy of a pattern is very critical
to this application.

The commonality of the above two applications is that the set
of items in each transaction works as an entirety for a task and
thus making occupancy as important a factor as frequency for rec-
ommending interesting patterns. In these applications, occupancy
becomes another pattern interestingness measure which is an in-
dispensable complement to frequency (or support): we consider a
pattern interesting if it is not only frequent, but also as complete as
possible in its supporting transactions. Intuitively, the support of a
recommended pattern correlates to the recommendation precision
while its occupancy is related to the recommendation recall.

We show that the value of occupancy does not increase or de-
crease monotonically when we add more items to a given itemset.
As a result, previous techniques for pruning the search space for
frequent itemset mining based on the anti-monotonicity of support
do not apply in our setting. We explore the properties for the upper
bounds of occupancy and quality (the weighted sum of support and
occupancy) for various patterns and use the upper bound to prune
the search process for high-efficient qualified pattern mining. The
contributions of our work can be summarized as follows:

• We introduce a new interestingness measure occupancy for
pattern mining problems. It is an indispensable complement to
the widely-studied measure of support when the items in a trans-
action serve as a whole for certain tasks. We formulate the problem
of mining top-k qualified patterns which maximize any increasing
function of support and occupancy. In this study the weighted sum
of support and occupancy is adopted as a show case.

• We propose an algorithm called DOFIA (DOminant and Fre-
quent Itemset mining Algorithm) to solve the problem of qualified
pattern mining. In DOFIA, we explore the properties on the upper
bound of occupancy for the patterns to prune the search process for
high-efficient pattern mining. Specifically, we propose two upper
bounds on occupancy for any given itemset X and its supersets in
the search tree. The first bound is computationally efficient, while
the second is proved to be the tightest bound with certain input con-
straint. We also show techniques to achieve tradeoff between these
two bounds.

• We demonstrate the importance of applying occupancy mea-
sure in pattern recommendation applications and the effectiveness
of DOFIA through a real-world application of print-area recom-
mendation for Web pages using real data. We show the introduction
of occupancy results in significant improvement on the quality of
the recommendation and the high performance of DOFIA in find-
ing the top quality patterns.

• We systematically evaluate the efficiency of DOFIA on some
large synthetic data sets. Specifically, we evaluate the impact on the
efficiency of the algorithm by varying the transaction database (i.e.,
the number of transactions, the average length of transactions, etc.),
the parameter settings (i.e., α, β, etc.), and the different strategies
used in DOFIA.

The rest of the paper is organized as follows. We first present the
formulation of the problem in Section 2. In Section 3 we give the
overview of the proposed algorithm DOFIA. The details of DOFIA,
especially on how to calculate the upper bounds on occupancy and
quality, are discussed in Section 4. We report the empirical study
to show the effectiveness and efficiency of DOFIA in Sections 5
and 6. We present the related works in Section 7 and conclude the
paper in Section 8.

2. PRELIMINARIES AND PROBLEM FOR-
MULATION

In this section we first give some preliminaries in pattern mining
and propose the definitions of occupancy. Then, we formulate the
qualified pattern mining problems which consider both support and
occupancy.

2.1 Definitions and Notations
A transaction database is a set of transactions, where each trans-

action is a set of items. Let I be the complete set of distinct items
and T be the complete set of transactions. Any non-empty set of
items is called an itemset and any set of transactions is called a
transaction set. The transactions that contain all the items in an
itemset X are the supporting transactions of X, denoted as TX .
The frequency of an itemset X (denoted as freq(X)) is the num-
ber of transactions in TX . The definitions of support and frequent
itemset are adopted from [1].

In the motivating applications in Section 1, the itemset we intend
to find should occupy a large portion of the transactions in which
it appears. We can calculate the occupancy degree as follows. For
an itemset X we identify all its supporting transactions TX . For
each transaction t ∈ TX we calculate the ratio of |X|

|t| . We then
aggregate these ratios to compute a single value of occupancy for
X. In this paper we focus on the average of these ratios while other
aggregate functions such as quantile or min may also be considered.
The definition of occupancy is given as follows.

Definition 1 (Occupancy): Formally, the occupancy of an itemset
X is defined as

φ(X) = average({ |X|
|t| : t ∈ TX}),

where average() is the average function of all the values in the
set.

Then, we can use two different average functions, harmonic av-
erage and arithmetic average, in the above definition. Due to space
limitations, we only consider the harmonic average in this paper,
but similar techniques can also be employed when considering arith-
metic average 2.

Definition 2 (Harmonic occupancy): The harmonic average of a
set of numbers A is HAverage(A) = |A|

∑
a∈A

1
a

. The harmonic

occupancy of an itemset X is defined as

φH(X) = HAverage({ |X|
|t| : t ∈ TX}) = |TX ||X|∑

t∈TX
|t|

It is clear that the occupancy of an itemset X is the average ratio
of the occurrences of the items in X to the number of the items
in the transaction it appears in. The high value of the occupancy
indicates that besides the items in X there are only a small number
of items left inside the supporting transactions of X. Let us take the
transaction database in Table 13 as an example. We calculate the
harmonic occupancy of the two itemsets I1 = {2, 7, 14, 20} and
I2 = {2, 7, 14, 15, 20} as follows. The supporting transactions of
I1 are {t1, t2, t3, t4, t7, t8, t9} while the supporting transactions of
I2 are {t1, t2, t4}.

φH (I1) =
4× 7

12 + 8 + 5 + 11 + 4× 3
≈ 0.54

φH (I2) =
5× 3

12 + 8 + 11
≈ 0.48

2The comparison on effectiveness between harmonic and arith-
metic average is out of the scope of this paper.
3This is a real world example taken from the HP’s print log
database.

76

Table 1: The transaction database of example 1
Trans No. Length Items

t1 12 1 2 4 7 8 9 10 14 15 16 20 21
t2 8 2 5 7 9 12 14 15 20
t3 5 2 7 13 14 20
t4 11 1 2 4 5 7 8 14 15 18 20 21
t5 6 2 3 7 11 14 21
t6 12 1 2 5 6 7 9 12 14 15 17 19 21
t7 4 2 7 14 20
t8 4 2 7 14 20
t9 4 2 7 14 20
t10 3 2 14 20

One may think that the itemset containing more items leads to a
bigger value of occupancy. However, it is not always true. Con-
sider itemsets I1 and I2. Even though I1 � I2, we have φH(I1) >
φH(I2). The reason is that I2 only appears in large transactions
where it only occupies a small fraction, while I1 appears in many
smaller transactions where it occupies a large fraction. Thus, occu-
pancy does not always increase monotonically when we add more
items to an itemset. Similarly, we can show that occupancy does
not always decrease monotonically when we add more items to an
itemset either. This non-monotonic property of occupancy is in
contrast to that of support in frequent pattern mining.

Definition 3 (Dominant Itemset): For a given minimum occupancy
threshold β (0 < β ≤ 1), X is said to be dominant if φ(X) ≥ β.

With the definition of support and occupancy we can measure
the quality of an itemset by combining these two factors.

Definition 4 (Quality): The quality of an itemset X is defined as
q(X) = σ(X) + λφ(X), where σ(·) denotes the (relative) sup-
port of a transaction, occupancy weight 0 ≤ λ < +∞ is a user
defined parameter to capture the relative importance of support and
occupancy.

Here we use the weighted sum of support and occupancy as the
quality. But it should be noted that any other functions, such as the
harmonic average (similar to the F1 score), the sum of logarithms
(similar to block size proposed in [8]) can be used to combine the
two values of support and occupancy. Additionally, the proposed
algorithms in this paper are independent of this function.

Definition 5 (Qualified Itemset): For a given minimum support
threshold α and a minimum occupancy threshold β (0 < α, β ≤
1), X is said to be qualified if σ(X) ≥ α and φ(X) ≥ β.

2.2 Problem Formulation
Some pattern recommendation applications require that interest-

ing patterns should be both frequent and dominant. On one hand,
if a pattern X is frequent it means that there are enough cases such
a pattern appears in the transaction database. Thus, it improves the
recommendation precision. On the other hand, if X is dominant it
indicates that the recommendation of X is complete enough. Thus,
it guarantees the recommendation recall. Therefore, with the defi-
nition of support and occupancy, we formulate the problem of min-
ing qualified patterns as follows.

Mining Qualified Patterns. This task is to find all the quali-
fied patterns (which are both frequent and dominant) in a transac-
tion database for the given support threshold α and the occupancy
threshold β.

Additionally, among all the qualified patterns we also aim to find
the pattern with the maximal quality value for recommendation.
Formally, it can be formulated as follows.

Table 2: The transaction database of example 2
Trans No. Items

t1 b c

t2 a b
t3 a b c

t4 a b d

t5 a b c d

Top Qualified Pattern. The top qualified pattern X is defined
as the qualified pattern with the maximal quality value:

argmax
X:σ(X)≥α,φ(X)≥β

(σ(X) + λφ(X)) (1)

Note that there may be multiple top qualified patterns if there are
ties in the maximum quality values.

There are three parameters in the definition of the top qualified
pattern, namely α, β, λ. If there is no itemset that is both frequent
and dominant with respect to α, β, the top qualified pattern does not
exist and a valid algorithm will not output any result since no non-
empty pattern exists that meets the quality requirements. Parameter
λ, the occupancy weight, is a user defined parameter to capture the
relative importance of support and occupancy.

In the rest of the paper, we will primarily focus on mining top
(i.e., k = 1) qualified pattern first. We then show that the solution
to top qualified pattern mining can be easily extended to solve the
problem of mining top-k qualified patterns for k > 1.

2.3 Discussion
One may think that dominant patterns with high occupancy usu-

ally contain a large number of items and thus methods based on
Maximal Frequent Itemset mining may be adopted for finding top-
k qualified patterns. (An itemset X is a maximal frequent itemset
if X is frequent and no superset of X is frequent [6]). Given a
support threshold we can get multiple maximal frequent itemsets,
among which we can select the one with the largest number of items
as the top qualified pattern. Is this a valid algorithm for mining top
qualified pattern? The answer is “no" for the following reasons.

First, in methods based on mining maximal frequent itemsets,
the number of items in a pattern is used as a measure in pattern se-
lection. Compared with the concept of occupancy, this is actually
the absolute size of an itemset while occupancy is the relative size
of an itemset to the number of items in its supporting transactions.
Thus, it is possible that the maximal frequent itemsets selected by
such methods have very low occupancy, even lower than the min-
imal occupancy threshold, thus leading to a low recall in recom-
mendation. For example, when α = 0.3, I2 = {2, 7, 14, 15, 20}
is a maximal frequent itemset for the transaction database in Ta-
ble 1. However, its occupancy is much lower than its subset I1 =
{2, 7, 14, 20} as described earlier. Secondly, in mining top quali-
fied pattern a weighted sum of both support and occupancy is used
as the interestingness measure, which may lead to better recom-
mendation performance compared to the patterns selected by meth-
ods based on maximal frequent itemsets. The experimental results
in Section 5 further validate our analysis here.

In the next section we will present our algorithm for the top qual-
ified pattern mining problem.

3. OVERVIEW OF DOFIA
The straightforward solution to the pattern mining problem is

to first generate all the frequent itemsets, calculate the occupancy
value for each frequent itemset, and then select the qualified itemset
with maximum quality value. In this section we will show how

77

{}

{a} {b} {c} {d}

{a, b} {a, c} {a, d}

{a, c, d}{a, b, c} {a, b, d}

{a, b, c, d}

{b, c} {b, d}

{b, c, d}

{c, d}

Figure 1: The lexicographic subset tree for the transaction
database in Table 2. The solid line shows the search space of
DOFIA, while the dashed line shows the search space for fre-
quent pattern mining. α = 0.4, β = 0.3, λ = 1.

the properties on occupancy and quality measures can be injected
deeply into the search process and greatly prune the search space.

Pattern mining algorithms usually adopt the lexicographic sub-
set tree to guide the search process. See Figure 1 as an example
for four items a, b, c, d. The top element in the tree is the empty
set and each lower level l contains all the l-itemsets (itemsets with
exactly l items). The l-itemsets are ordered lexicographically on
each level. Generating children in this manner enumerates all the
distinct itemsets to be considered without redundancy. As there are
4 items, there are in total 24 = 16 itemsets for consideration. Thus,
in the lexicographic subset tree there are 16 nodes, each of which
corresponds to an itemset.

Frequent pattern mining usually leverages the monotonic decreas-
ing property of support values when adding more items to a given
itemset. That is, if an itemset X is not frequent then all the super-
sets of X are not frequent either. Thus, the traversal in the tree is
to find a cut (the dashed line in Figure 1) such that all the nodes
(itemsets) above the cut are frequent, and all the nodes below the
line are infrequent.

In this section we will show how to explore the properties on oc-
cupancy and quality to further prune the search space in the search
tree. Specifically, given the root of a subtree we can estimate the
upper bounds of the occupancy and quality values for all the nodes
in this subtree. In other words, the occupancy and quality of any
node in the given subtree will be no bigger than its upper bounds,
respectively. If the upper bound on the occupancy is smaller than
the occupancy threshold β, this subtree should be pruned. Also, we
can maintain the current biggest quality value in the search process
so far, denoted by q∗, and all subtrees with the upper bounds less
than q∗ should be pruned.

Take the subtree with the root {b} in Figure 1 as an example.
We can give an upper bound of the quality for all the nodes in
the subtree, including {b}, {bc}, {bd}, {bcd}. Assume we have al-
ready found {ac} is the node with the highest quality 1.467 so far,
which is bigger than the upper bound for the subtree rooted at {b}.
Thus, subtree {b} can be pruned. The solid line (which is above
the dashed one) in Figure 1 is the cut line for pruning the search
space for mining top qualified pattern. In this example, the search
space when using only the frequency constraint for pruning has 12
nodes while the search space of DOFIA has only 5 nodes. The
search space is greatly reduced by pruning using the upper bounds
for occupancy and quality.

In Figure 1 the children of a node in the subset tree are ordered
lexicographically on each level. It is worth mentioning that the
order of these children also affects the algorithm efficiency. Ideally,
we prefer to visit the nodes with the bigger quality values as early

as possible since the big quality value can be used to prune the
nodes whose quality upper bounds are less than it. On the other
hand, we hope that the proposed upper bounds for occupancy and
quality are as close as possible to the ground-truth values for a given
subtree, which also helps to prune the search space. We consider
two kinds of orders for the children of a node, i.e. the ascending and
descending order of itemset support. Some experiments show that
usually the ascending support order is more efficient than the other
one (at least on the transaction databases used in the experiments).
It seems the “fail first principle” applies in this case. The analysis
on this observation is omitted.

Algorithm 1: DOFIA_DFS
input : the current Node currentNode, the top qualified pattern so

far bestNode
1 if currentNode.quality > bestNode.quality then
2 bestNode← currentNode;

3 for node ∈ currentNode.children do
4 supp← node.support;
5 occu← the occupancy bound on the subtree rooted at node;
6 qual← the quality bound on the subtree rooted at node;
7 if (supp ≥ α) ∧ (occu ≥ β) ∧ (qual ≥ bestNode.quality)

then
8 DOFIA_DFS(node, bestNode);

Algorithm 1 is the pattern mining process of a Depth-First-Search
(DFS) with the pruning techniques. Note that since each node in the
search tree uniquely corresponds to an itemset, we use the terms
“node” and “itemset” interchangeably here. At currentNode we
first compare its quality with the top qualified node found so far.
Then, we check any child, denoted by node, of currentNode.
If node is not frequent, or its occupancy upper bound is smaller
than β, or its quality upper bound is smaller than the current maxi-
mal quality value, then node is pruned. Otherwise, we recursively
check node.

So far we have omitted the most challenging part in the algo-
rithm: how to compute the upper bounds on occupancy and quality.
Since the pruning of the search process is at the cost of computing
these upper bounds, they should be computed efficiently. We de-
scribe its details in the next section.

4. THE UPPER BOUNDS OF OCCUPANCY
AND QUALITY

In this section we will show how to efficiently compute the upper
bounds of the harmonic occupancy and its quality. First, We give
an overview of these upper bounds in Section 4.1.

4.1 Overview of the Upper Bounds
We give the notations which will be widely used in this study

as follows. For any subtree, let X be the itemset for the subtree
root (the root itemset), Y be the itemset including all the new items
which will be extended in all the descendants of this subtree (the
extension itemset). For example, for the subtree root X = {b}
in Figure 1 there are two new items c, d which appear in the de-
scendants. Thus, Y = {cd}. With the extension itemset Y , we
can get the following two vectors EL (Extension Length vector)
and TL (Transaction Length vector) such that EL(i) = |ti ∩ Y |
and TL(i) = |ti|, where ti is any transaction in TX . For exam-
ple, for the root set X = {ab} with extension set Y = {cd}, the
supporting transactions are TX = 〈t2, t3, t4, t5〉, and thus EL =
〈|t2 ∩ Y |, |t3 ∩ Y |, |t4 ∩ Y |, |t5 ∩ Y |〉 = 〈0, 1, 1, 2〉, and TL =
〈|t2|, |t3|, |t4|, |t5|〉 = 〈2, 3, 3, 4〉. Furthermore, we will use u to
denote the frequency of an itemset W in the subtree rooted at X,

78

and v to denote how many items are in W aside from the items in
X, i.e. v = |W −X|. These notations are summarized in Table 3.

Furthermore, we will frequently need to sort EL,TL. For a vector
V (V is EL or TL in our case), V↑ (V↓) is the vector obtained by
sorting V in ascending (descending) order. So EL↓(1) will be the
largest value in EL, and TL↑(i) will be the i-th smallest value in
TL.

Table 3: Notations used by Section 3
X The itemset for the root of a subtree

Y The extension itemset for the corresponding subtree

W Any itemset in the subtree X , X ⊆W ⊆ (X ∪ Y)

u u often denotes |TW |
v v often denotes |W −X|

EL The Extension Length vector, EL(i) = |ti ∩ Y | where ti ∈ TX
TL The Transaction Length vector, TL(i) = |ti| where ti ∈ TX

V↑,V↓ vector V sorted by ascending/descending order

We aim to estimate the occupancy and quality upper bounds of
all the nodes in the subtree of X . In other words, the occupancy
(quality) of any node in the subtree of X will be less than this oc-
cupancy (quality) upper bound. The basic idea is briefly described
as follows.

First, we assume that we know the frequency u of any item-
set W ⊆ (X ∪ Y) in the subtree of X . Then, we will propose
F (u, |X|,EL,TL) such that

φ(W) ≤ F (u, |X|,EL,TL), (2)

It is worth mentioning that the computation of F only involves
u, |X|,EL,TL. Using more detailed information in TX would surely
lead to better bounds, but it would also make the computation more
costly. Also note that here F is dependent on u, the frequency of
W .

Then, we will show F (u, |X|,EL,TL) is not increasing with the
increase of u, namely

F (u+ 1, |X|,EL,TL) ≤ F (u, |X|,EL,TL) (3)

We call Equation 3 the anti-monotonicity property of the occupancy
upper bound with respect to u.

Since it is required that W be frequent, its frequency u should
not be less than the minimum frequency threshold freqmin , the
minimal integer which is not smaller than α · |T |. Thus, we have
the following theorem.

Theorem 1 (Occupancy Upper Bound): For any itemset W in the
subtree of X

φ(W) ≤ F (freqmin, |X|,EL,TL), (4)

Proof: The conclusion holds ifF (u, |X|,EL,TL) satisfies Inequal-
ities (2) and (3).

Note that in Theorem 1 it is not required to know the frequency of
W . Thus, this is the occupancy upper bound of any node in the
subtree of X. Next, for the upper bound of quality we also have

Theorem 2 (Quality Upper Bound): For any itemset W in the sub-
tree of X

q(W) ≤ max
freqmin≤u′≤|TX |

(
u′

|T | + λF (u′, |X|,EL,TL)) (5)

Proof: For any W in the subtree of X with the frequency u,

q(W) =
u

|T | + φ(W) ≤ u

|T | + λF (u, |X|,EL,TL), (6)

Then, the conclusion holds if F (u, |X|,EL,TL) satisfies Inequal-
ity (2).

Theorem 2 gives the quality upper bound of any node in the sub-
tree of X. It should be noted that the result is independent of the
function to combine support and occupancy. Any other functions
can be used here and the quality upper bounds can be computed in
similar ways.

In the following we will propose the F functions which satisfy
Inequalities (2) and (3) for the harmonic occupancy.
4.2 The Upper Bounds of the Harmonic Oc-

cupancy
For harmonic occupancy we will propose two instances of F

which satisfy Inequalities (2) and (3). We will show that the first
F is more efficient, however, less tight than the second one. We
also theoretically prove that the second F gives the tightest upper
bound if only the values of |X|,EL,TL are used for the compu-
tation. Finally, we show how to achieve the tradeoff between the
bound tightness and computational efficiency.
4.2.1 The Efficient Upper Bound F (u, |X|,EL,TL)

We propose F (u, |X|,EL,TL) function as follows.

F (u, |X|,EL,TL) =
u|X| + uEL↓(u)∑u

i=1 TL↑(i)
, (7)

Next, We propose Properties 1 and 2 to show that the F function in
Equation (7) satisfies Inequalities (2) and (3).

Property 1: For any itemset W in the subtree of X, let u be the
frequency of W . Then, the occupancy of W satisfies that

φH(W) ≤ F (u, |X|, EL, TL) (8)

Proof: Let’s consider the harmonic occupancy of W .

φH (W) =
u|W |

∑
t∈TW

|t|
(9)

=
u|X|+ u|W −X|

∑
t∈TW

|t|
(10)

≤u|X|+ uEL↓(u)
∑

t∈TW
|t|

(11)

≤u|X|+ uEL↓(u)
∑u

i=1 TL↑(i)
(12)

Note that Inequality (11) is due to the fact that since |TW | = u,
there are at least u transactions whose extension lengths are not
smaller than |W −X|, and so |W −X| can be no larger than the
smallest of these u lengths.

Property 2: F (u+ 1, |X|,EL,TL) ≤ F (u, |X|, EL,TL).

Proof:

F (u+ 1, |X|,EL, TL) (13)

=
(u+ 1)|X|+ (u+ 1)EL↓(u+ 1)

∑u+1
i=1 TL↑(i)

(14)

≤u(|X|+ EL↓(u)) + (|X|+ EL↓(u))

(
∑u

i=1 TL↑(i)) + TL↑(u+ 1)
(15)

≤u|X|+ uEL↓(u)
∑u

i=1 TL↑(i)
(16)

=F (u, |X|,EL,TL) (17)

Inequality (15) comes from EL↓(u+1) ≤ EL↓(u).Inequality (16)
comes from the property that for any a1, a2 ≥ 0 and b1, b2 > 0,
a1
b1

≥ a2
b2

⇒ a1
b1

≥ a1+a2
b1+b2

. It is easy to check that u(|X|+EL↓(u))
∑u

i=1
TL↑(i) ≥

|X|+EL↓(u)
TL↑(u+1)

, so Inequality (16) follows.

79

With Properties 1 and 2 we can also easily prove that the re-
sults in Theorems 1 and 2 hold for F (u, |X|,EL,TL). Then, Al-
gorithm 2 gives the pseudo code for computing the quality upper
bound in Theorem 2 with F (u, |X|, EL,TL).

The complexity of Algorithm 2 is O(n + TL↓(1)). We first use
the time of O(n + TL↓(1)) for sorting EL,TL with counting sort
algorithm, and then O(n) time for the loop in Line 5.

Note that if any other function is used in the quality definition to
combine support and occupancy we can substitute the equation of
u/|T | + λ · occu in Line 9 with the used function to get the right
answer.

Algorithm 2: The quality upper bound based on
F (u, |X|,EL,TL)

input : the root set X , the extension set Y , the corresponding two
vectors EL, TL and n = |TX |.

output: qual, the quality upper bound of any itemset in the subtree
rooted at X .

1 sort EL by descending order;
2 sort TL by ascending order;
3 sum← 0;
4 qual← −∞;
5 for u← 1 to n do
6 sum← sum+ TL(u);
7 if u ≥ freqmin then
8 occu← (u|X|+ u · EL(u))/sum;
9 qual← max(qual, u/|T |+ λ · occu);

4.2.2 The “Tightest” Upper Bound F ′(u, v, |X|,EL,TL)

As mentioned before, F (u, |X|,EL,TL) has the parameter u,
frequency for any itemset W in the subtree of X . Using a new
parameter v = |W ∩ Y | = |W −X|, i.e., the number of items in
W aside from those in X , we may obtain a stronger upper bound.

Property 3: Let

F ′(u, v, |X|,EL,TL) =
u|X| + u · v

minl1,··· ,lu,EL(li)≥v

∑u
i=1 TL↑(li)

(18)

Then for any itemset W in the subtree of X with |TW | = u and
|W ∩ Y | = v, we have φH(W) ≤ F ′(u, v, |X|,EL,TL).

Furthermore, for any itemset W ′ in the subtree of X with |TW ′ | =
u (and no constraint on |W ′ ∩ Y |), we have

φH(W ′) ≤ max
0≤v≤EL↓(u)

F ′(u, v, |X|,EL,TL) (19)

� F ′(u, |X|,EL,TL) (20)

Proof: For any itemset W as described in Property 3, we have

φH (W) =
u|W |

∑
t∈TW

|t|
(21)

=
u|W ∩ (I − Y)|+ u|W ∩ Y |

∑
t∈TW

|t|
(22)

=
u|X|+ uv
∑

t∈TW
|t|

(23)

Note that TW are the supporting transactions of W and |TW | =
u. Since X ⊂ W , by the anti-monotonicity of frequent item-
sets, TW ⊆ TX . Since |W ∩ Y | = v, for any t ∈ TW , |t ∩

Y | ≥ |W ∩ Y | = v. Combining these two factors,
∑

t∈TW
|t| ≥

minl1,··· ,lu,EL(li)≥v

∑u
i=1 TL↑(li). Thus,

φH(W) =
u|X| + uv∑

t∈TW
|t| ≤

u|X|+ uv

minl1,··· ,lu,EL(li)≥v

∑u
i=1 TL↑(li)

For any itemsets W ′ in the subtree with |TW ′ | = u, it must be
the case that 0 ≤ |W ′ ∩ Y | ≤ EL↓(u). We unify the bounds
F ′(u, v, |X|, EL,TL) over v and then have

φH(W ′) ≤ max
0≤v≤EL↓(u)

F ′(u, v, |X|,EL,TL)

Property 4: F ′(u+1, |X|,EL,TL) ≤ F ′(u, |X|,EL,TL). Here,
the definition of F ′(u, |X|,EL,TL) is given in Equation (20).

Proof: By the definition of F ′(u, v, |X|, EL,TL), similar to the
proof of Inequality (16), we have

F ′(u+ 1, v, |X|,EL,TL) ≤ F ′(u, v, |X|,EL,TL)

for any u, v.
Since EL↓(u+ 1) ≤ EL↓(u), we have

F ′(u+ 1, |X|,EL,TL) (24)

= max
0≤v≤EL↓(u+1)

F ′(u+ 1, v, |X|,EL, TL) (25)

≤ max
0≤v≤EL↓(u+1)

F ′(u, v, |X|,EL,TL) (26)

≤ max
0≤v≤EL↓(u)

F ′(u, v, |X|,EL,TL) (27)

=F ′(u, |X|,EL,TL) (28)

With Properties 3 and 4 we can also easily prove that Theorems 1
and 2 also hold for F ′(u, |X|,EL,TL).

Remark 1: The Functions of F and F ′ proposed in Property 1
and Property 3 can be both improved by a small technique. If |t ∩
Y | = |Y | for some t ∈ TX , then Y ⊆ t. Thus, t is a supporting
transaction for any W in the subtree of X. This observation can
further improve the two bounds above. We omit details because it
would make the formulae too complicated.

Algorithm 3: The quality upper bound based on
F ′(u, v, |X|,EL,TL)

input : the root set X , the extension set Y , the corresponding two
vectors EL, TL and n = |TX |.

output: qual, the quality upper bound of any itemset in the subtree
rooted at X .

1 sort 〈EL,TL〉 by ascending order of TL;
2 sum← 0;
3 qual← −∞;
4 for v ← 0 to EL↓(freqmin) do
5 u← 0;
6 for i← 1 to n do
7 if EL(i) ≥ v then
8 u← u+ 1;
9 sum← sum+ TL(i);

10 if u ≥ freqmin then
11 occu← (u|X|+ u · v)/sum;
12 qual← max(qual, u/|T |+ λ · occu);

Algorithm 3 shows the pseudo code for computing the quality
upper bound based on F ′(u, v, |X|,EL,TL). The time complexity

80

Quality Upper Bound Complexity

F O(n+ TL↓(1))

F ′ O(TL↓(1) + n · EL↓(1))

F̂ O(TL↓(1) +mn)

Table 4: The complexity of different estimation methods of
quality upper bound
is O(n+ TL↓(1) + n · EL↓(freqmin)), in which O(n+ TL↓(1))
is for sorting the transactions (with counting sort algorithm) and
O(n · EL↓(freqmin)) for the double loop in Line 4 and Line 6.

Also, we theoretically prove that F ′ is the tightest upper bound
if only the values of |X|, EL and TL are used in the computation.
Namely, we have the following theorem and its proof is omitted.

Theorem 3: F ′(u, |X|,EL,TL) is the tightest upper bound for har-
monic occupancy of any node in the subtree of X with u supporting
transactions if we only use the values of |X|,EL,TL to compute the
bound.

Corollary 1: max1≤u≤|TX |

(
u

|T | + λF ′(u, |X|,EL,TL)
)

is the

tightest upper bound of the harmonic quality (harmonic occupancy
used inside) of any node in the subtree of X if we only use the
values of |X|,EL,TL to compute the bound.

4.2.3 Tradeoff Between Bound Tightness and Com-
putational Efficiency

We have proposed two quality bounds based on harmonic oc-
cupancy so far. Their complexity is summarized in Table 4.2.3.
Although F ′ is provably tighter than F , when EL↓(1) is large, it
can also take much more time than F and possibly becomes the
computing bottleneck. To alleviate this situation, we propose a
new technique that achieves balance between the bound tightness
and computational efficiency. The basic idea is as follows. In-
stead of enumerating every possible value of EL in the range of
[0,EL↓(freqmin)], we split this large interval into m smaller inter-
vals [v0, v1−1], · · · , [vm−1, vm−1] (v0 = 0, vm = EL↓(freqmin)+
1).

For each interval [vk−1, vk−1], using the assumption that vk−1 ≤
|W −X| < vk, we obtain a tighter bound on occupancy in Prop-
erty 5. In the end, we unify the m bounds and get a final re-
sult. The time complexity for computing such a quality bound is
O(n+TL↓(1)+mn). Using a proper value for m, we achieve the
tradeoff between the efficiency and effectiveness of the bound. The
complexity for these three methods are summarized in Table 4.

Property 5: For any itemset W in the subtree of X , let u be the
frequency of W . Assume vk ≤ |W − X| < vk+1, then the har-
monic occupancy of W satisfies that

φH(W) ≤ u|X|+ umin(EL↓(u), vk+1 − 1)

minl1,··· ,lu,EL(li)≥vk

∑u
i=1 TL↑(li)

(29)

where tli is any supporting transaction of X .

The proof is omitted here. Then, we have the following theorems.

Theorem 4: Let u′ = freqmin be the minimum frequency thresh-
old. For any integers 0 = v0 < v1 < · · · < vm = EL↓(u′) + 1,

F̂ (u′, |X|,EL,TL) = max
0≤k<m

F̂ (u′, vk, vk+1, |X|,EL,TL)

is the upper bound on harmonic occupancy for any frequent W in
the subtree of X. And

max
u′≤u≤|TX |

u

|T | + λF̂ (u, |X|,EL,TL)

is the upper bound on quality for any such W .

5. EVALUATION ON EFFECTIVENESS
In this section we evaluate the effectiveness of occupancy in a

real-world application of print-area recommendation. Here, as-
sume that we have the log database which records how previous
users clipped the Web pages from a Web site. Each transaction
refers a set of content clips selected on a Web page. Given a Web
page from the same Web site, we aim to recommend the informa-
tive clips for this Web page. More specifically, let I be the com-
plete set of distinct clips in the database. For a given Web page we
can get a set Q ⊆ I of clips which are included in this Web page
(how to determine Q is omitted). Thus, our task is to select a subset
of Q for the clip recommendation. By mining top qualified itemset
the recommended itemset is the one F ⊆ Q which has the maxi-
mal quality value among the qualified itemsets (for a given support
threshold α and a occupancy threshold β).

To show the effectiveness of the proposed method we manually
labeled the ground-truth of print-areas on the 2000 Web pages from
the 100 major print-worthy Web sites (20 pages for each Web site).

We compare the proposed solution with the maximal frequent
itemset based method (introduced in Section 2.3). Specifically,
we can first generate all the maximal frequent itemsets and among
them select the one with the largest number of items for recommen-
dation.

For the 20 Web pages from a Web site, we use leave-one-out
cross validation to evaluate the recommendation accuracy, i.e. we
iteratively select one page as query and the log data on the left 19
Web pages are used to generate the transaction database for rec-
ommendation. A recommendation result actually refers to a set of
content clips on the given Web page. Thus, we can evaluate its
effectiveness by calculating the overlap area between the recom-
mended clips and the ground truth on the query page. Then, with
the overlap area we can calculate the precision P , recall R and F1
score of the recommendation in terms of area size. Specifically

P =
|AG ∩ AR|

|AR|
, R =

|AG ∩ AR|
|AG|

, F1 = 2 ×
P × R

P + R
, (30)

Where AG is the clipping region of ground truth, AR is the clip-
ping region of the recommendation result and | . . . | denotes the
region size. If the precision is less than 1, it means that we need to
remove some areas from the recommendation. If the recall is less
than 1, it indicates that we need to add some contents to get the ex-
act clipping areas. Then, we can average these these performance
values over the 2000 Web pages to get the average performance.

The experiments in this section try to answer the following ques-
tions: (1) Does the concept of occupancy help to improve the rec-
ommendation performance compared with the baseline method?
(2) How does the occupancy weight λ affect the recommendation
performance?

The results of the baseline method are summarized in Table 5.
The results of DOFIA are show in Table 6. Each entry in Tables 5
and 6 is the arithmetic average of the values (precision, recall and
F1) over the 2000 Web pages. Since the F1 value is the harmonic
average of precision and recall, the average F1 value over all those
Web pages may be less than the average values of both precision
and recall. For example, as shown in Table 6 when λ = 0 the av-
erage F1 value is 79.79%, which is smaller than the corresponding
average values of precision and recall.

Note that for the baseline method, the maximal F1 score is 90.56%
(when α = 0.1), while DOFIA achieves a maximal F1 score of
93.8% (when λ = 6.0). So the improvement on recommendation
accuracy is clear.

The role of λ in DOFIA to this application is quite interesting.
Intuitively, λ represents the emphasis we put on occupancy. A
higher emphasis on occupancy is expected to lead to a better recall.

81

Such is indeed the case—when λ increases from 0.0 to around 5.0,
recommendation recall increases significantly for the models. In-
terestingly, recommendation precision increases at the same time.
The main reason is that with the increase of λ the quality value
(considering both support and occupancy) may lead to better pat-
terns whose area intersection with the ground truth have both better
precision and better recall (see Equation (30)). However, when λ
is too large, the performance of DOFIA deteriorates. Too much
emphasis on occupancy tends to find patterns with a very small
support just above the threshold α and the recommendation quality
will naturally drop greatly.

6. EVALUATION ON EFFICIENCY
In this section we present the empirical evaluation on the effi-

ciency of the proposed algorithm DOFIA over the large synthetic
data sets. Specifically, we compare its running time with the base-
line method to our problem. Here, the baseline method is to find
all frequent itemsets first, compute the occupancy and quality for
them, and then output top-k qualified ones. The implementation of
MAFIA [6] includes a fast algorithm for frequent pattern mining,
which is adopted in this comparison. We use MAFIA to find all the
closed frequent itemsets, compute their quality values in the search
process, and use a priority queue to maintain the top-k qualified
itemsets. In practice, we find that the time to compute quality val-
ues and maintain the priority queue is actually negligible compared
to the search process, so in the experiments below, we only show
the time MAFIA used to find all the closed frequent itemsets, which
is a lower bound for the time spent by the baseline. To abuse the
notation a little bit, we still call the baseline method MAFIA. Our
method, DOFIA, leverages the properties in Section 3 to further
prune the search space, thus may achieve better efficiency.

The data sets used in this section are generated with the IBM
synthetic data generator for itemset patterns [2]. We evaluate the
efficiency on the data sets with different characteristics. The main
parameters to generate the data include N : the number of trans-
actions, L: the average length of transactions, I : the number of
distinct items, PL: the average length of patterns, PN : the num-
ber of patterns. In our experiments, the default parameters for data
generation are N = 50000, I = 1000, L = 20, I = 1000, PL =
5, PN = 100. In Section 6.1, We will adjust one parameter while
fixing all the others to generate a series of data sets and show the
efficiency changes. Only experiments on N and L are presented,
and other parameters do not have much impact on running time of
the algorithms when their values are within a reasonable range.

In addition, we also check the performance changes with dif-
ferent settings of problem parameters, including: the frequency
threshold, α; the occupancy threshold, β; the number of top qual-
ified itemsets we are searching for, k. The default values for these
parameters are α = 0.005, β = 0.5, λ = 5, k = 5. Similarly,
we will adjust one parameter while fixing all the others to see the
efficiency changes.

Table 5: The recommendation performance of the maximum
frequent itemsets based method

α P(%) R(%) F1(%)
0.0 85.85 96.02 88.74
0.05 90.28 92.2 89.81
0.1 90.6 92.84 90.56
0.2 90.65 92.12 90.05
0.3 89.5 91.02 88.88
0.4 87.11 87.57 85.48
0.5 82.0 81.75 79.06

Table 6: The recommendation performance (α = 0.05 and
β = 0.1)

λ P(%) R(%) F1(%)

0.0 90.04 82.15 79.79

0.5 89.67 92.84 88.78

1.0 90.77 94.74 91.3

2.0 91.63 95.96 92.81

4.0 92.65 96.31 93.6

5.0 92.81 96.3 93.64

6.0 93.23 96.19 93.8
8.0 93.23 95.95 93.7

10.0 93.34 95.84 93.71

+∞ 91.27 91.62 89.82

Average 91.76 93.91 91.12

10 20 30 40 50
10

4

10
5

10
6

number of transactions/K

no
de

s

MAFIA
DOFIA

(a) Number of Nodes

10 20 30 40 50
10

0

10
1

10
2

10
3

number of transactions/K

tim
e/

se
c

MAFIA
DOFIA

(b) Running Time

Figure 2: The effects of the number of transactions on MAFIA
and DOFIA

Finally, we will compare the tradeoff between computational ef-
ficiency and bound tightness. By default, we use the upper bounds
proposed in Section 4.2.1.

The experiments were performed on a Windows 7 laptop with
quad core Intel i5-540M processor and 4 GB of main memory.

6.1 Evaluation on Different Databases
The number of transactions. Here, we generate a database of

N = 10000 transactions and scale it up by vertical concatenation
of the database. The results are shown in Figure 2, including the
running time and the number of nodes in the subset tree searched
by MAFIA and DOFIA. Note that in this experiments we only du-
plicate the database to increase its size. Thus, the number of nodes
visited in the subset tree are expected to stay unchanged. As can be
seen from Figure 2(a), DOFIA only searches about 1.4% nodes of
those searched by MAFIA. With respect to running time, DOFIA’s
running time grows linearly, from 2.45 seconds for 10000 transac-
tions to 10.34 seconds for 50000 transactions. What is interesting
is that MAFIA’s running time remains stable when the number of
transactions grows. After careful investigation, we think it is due to
the extreme efficiency of bit operators used extensively by MAFIA.
However, since it takes MAFIA about 195 seconds to run the ex-
periment for each data set, DOFIA is still much faster.

The average length of transactions. Here, we vary the av-
erage length of transactions. With the number of items growing
in each transaction, the length of interesting patterns also grows.
So we expect an exponentially growing number of frequent item-
sets. Without proper pruning, MAFIA obviously cannot handle
such cases. As shown in Figure 3, although it is faster than DOFIA
when L = 10, it becomes very slow as L grows larger, taking more
than 106 seconds when L ≥ 25. On the hand, with the help of
efficient pruning on occupancy and quality, DOFIA’s running time
grows smoothly, from 1.22 seconds for L = 10 to 5.88 seconds for
L = 30.

82

10 15 20 25 30
10

3

10
4

10
5

10
6

10
7

average length of transactions

no
de

s

MAFIA
DOFIA

(a) Number of Nodes

10 15 20 25 30
10

−2

10
0

10
2

10
4

10
6

average length of transactions

tim
e/

se
c

MAFIA
DOFIA

(b) Running Time

Figure 3: The effects of the average length of transactions on
MAFIA and DOFIA

2 4 6 8

x 10
−3

10
3

10
4

10
5

10
6

10
7

α

no
de

s

MAFIA
DOFIA

(a) Number of Nodes

2 4 6 8

x 10
−3

10
0

10
1

10
2

10
3

10
4

10
5

α

tim
e/

se
c

MAFIA
DOFIA

(b) Running Time

Figure 4: The effects of the minimum frequency threshold on
MAFIA and DOFIA

6.2 Evaluation on Different Problem Settings
The frequency threshold. In practice, it is often desirable to

have a low frequency threshold in order to detect more diverse
patterns. However, with the lowering of frequency also comes
the problem of too many frequent patterns and long running time.
As seen in Figure 4, although MAFIA is just a little slower than
DOFIA when frequency threshold α = 0.8%, it running time grows
quickly with the decrease on α, and takes longer than 10000 sec-
onds when α = 0.2%. On the other hand, DOFIA remains rel-
atively efficient even at very low frequency threshold, due to the
pruning on occupancy and quality.

The occupancy threshold. As shown in Figure 5, with the de-
crease of the occupancy threshold β, the running time and the num-
ber of the visited nodes increases moderately for DOFIA. As beta β
decreases from 0.5 to 0.1, the number of nodes searched increases
by 40.6% and the running time increases by 11.1%. One might
expect that the increase in running time is exponential, but since
we are doing the top-k qualified search, the most qualified nodes
DOFIA has encountered helps a lot in reducing the search space,
even if we set a low value in occupancy threshold. This observa-
tion gives us a lot of flexibility in choosing a proper value for β.

The occupancy weight parameter. The occupancy weight pa-
rameter λ reflects the priority we put on occupancy. Here, we em-

0.1 0.2 0.3 0.4 0.5
2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

4

β

no
de

s

(a) Number of Nodes

0.1 0.2 0.3 0.4 0.5
12

12.5

13

13.5

14

β

tim
e

(s
ec

)

(b) Running Time

Figure 5: The effects of the minimum occupancy threshold on
DOFIA

0 0.5 1 1.5 2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

λ

no
de

s

(a) Number of Nodes

0 0.5 1 1.5 2
9

9.5

10

10.5

11

λ

tim
e

(s
ec

)

(b) Running Time

Figure 6: The effects of the occupancy weight parameter on
DOFIA

10
0

10
1

10
2

10
3

0

1

2

3

4

5
x 10

4

k

no
de

s

(a) Number of Nodes

10
0

10
1

10
2

10
3

9

10

11

12

13

14

k

tim
e

(s
ec

)

(b) Running Time

Figure 7: The effects of top-k on DOFIA

pirically test DOFIA’s performance when we vary λ. As can be
seen from Figure 6, with the increase of λ from 0 to 2, the number
of nodes visited by DOFIA increased by 80%, and the running time
increased by 17%. The increase is mainly due to the fact that when
λ is small the quality is dominated by its support, thus the high-
frequency itemset with a small number of items will be output very
fast. When λ becomes larger, it has to visit much more itemsets
with high occupancy. When λ > 1, the number of nodes visited
and running time converges because occupancy is already playing
the major role here, and thus the increase on λ has little effect on
the behavior of the algorithm.

Top k. In practice, we often want to mine more than just the top
few qualified patterns. With more patterns we can even do ranking
on these patterns and find a set of diverse and high-quality itemsets.
Here, we increase k to check the performance of DOFIA. As can be
seen from Figure 7, though the number nodes grows about 300%
when k increases from 1 to 200, the running time only increases
moderately by about 40%.

6.3 Tradeoff between Bound Tightness and Com-
putational Efficiency

In section 4.2.3 we proposed a technique that achieves tradeoff
between bound tightness and computational efficiency. Specifi-
cally, instead of enumerating each possible value of |W ∩ Y | in
the range of [0,EL↓(freqmin)] as F ′ does, we suggest to split the
large interval into smaller intervals [v0, v1 − 1], · · · , [vK−1, vK −
1], (v0 = 0, vK = EL↓(freqmin) + 1).

Figure 8 shows the effect of this technique in one of our synthetic
data sets. The x-axis shows the “interval length”, i.e. vi−vi−1 and
the y-axis shows the number of nodes searched and the running
time in the two figures respectively. As can be seen, smaller the
interval length, tighter the bound and fewer the nodes searched. In
the case where the interval length is 1, only 60% nodes are searched
compared to the case where the interval length is 13. However, the
shortest running time does not occur when the bound is tightest,
since the computation is too costly. In this case, the algorithm is
fastest when the interval length is 7.

83

0 5 10 15
0.7

0.8

0.9

1

1.1

1.2

1.3

interval length

no
de

s

(a) Number of Nodes

0 5 10 15
26

27

28

29

30

31

32

interval length

tim
e/

se
c

(b) Running Time

Figure 8: Tradeoff between computing efficiency and bound
tightness

7. RELATED WORKS
Frequent pattern mining [1] has been well recognized to be fun-

damental to many important data mining tasks. There is a great
amount of work that studies efficient mining of frequent patterns [11,
9, 6, 12], and we refer to [10] as a recent review on this field. These
algorithms can be classified into mining frequent patterns [11, 9],
frequent maximal patterns [6], and frequent closed patterns [12].
To reduce the number of frequent patterns some interestingness
measures and constraints are proposed [13, 4, 5, 8] along with al-
gorithms to implement them efficiently. Recently, graphical mod-
els[16] and compression[15] have also been proposed to approxi-
mate the frequent itemset with a minimal number of rules or pat-
terns.

The concept of occupancy proposed in this paper can be viewed
as a new interesting measure and constraint. It can be seen as the
relative size of a pattern to its supporting transactions rather than
the absolute size of it, and might be more meaningful in many
applications. After proposing the concept of occupancy, we then
formulate the problem of mining top-k qualified patterns which
maximize the weighted sum of support and occupancy. Empiri-
cal tests on web print recommendation shows that the top quali-
fied patterns can significantly improve the recommendation results
when the weight on occupancy is chosen properly.

One work very similar to the spirits of ours is [17], where Wang
et al. formulated the problem of finding the top-k frequent itemsets
with their sizes no smaller than a threshold. Here we should note
the difference between our work and theirs. First, [17] used the ab-
solute size of an itemset as a constraint, while we use occupancy,
the relative size of an itemset to its supporting transactions. As ar-
gued before, in many cases occupancy might be a more reasonable
constraint. Besides, since occupancy is a normalized value, it also
makes the tuning easier. Second, [17] tried to find the top-k fre-
quent itemset, so frequency was used as the quality measure. In
our work we define quality as the weighted sum of support and oc-
cupancy, which might be more appropriate. In another work [8],
Gade et al. proposed to maximize the product of itemset size and
its frequency. Again, occupancy might be a better measure than ab-
solute itemset size. Recent works [7, 14] have also proposed meth-
ods to deal with complex constraints constructed from primitives.
In those works, the primitives are required to be monotonic/anti-
monotonic/convex, none of which is a property of occupancy. But
in might be an interesting work to extend these frameworks to han-
dle occupancy properly.

Different from many other constraints proposed, occupancy is
not anti-monotonic, monotonic, convertible, and succinct [8], thus,
no previous methods can be leveraged.

8. CONCLUSION
In this study, motivated by the pattern recommendation appli-

cations we introduce a new measure of pattern interestingness oc-
cupancy and formulate the problem of mining top-k qualified pat-
terns. To solve this problem, we explore the upper bound proper-

ties on occupancy and propose DOFIA that injects these properties
deeply into the search process. We propose two upper bounds, in
which the first one is more efficient and the second one is theo-
retically proved to be tightest with certain input constraints. We
show the effectiveness of occupancy in the real-world application
of print-area recommendation for Web pages. Finally, on large syn-
thetic data we demonstrate that DOFIA significantly outperforms
the baseline method in terms of efficiency. It is worth mentioning
that the concept of occupancy can be extended to sequential pat-
tern mining [3] and graph mining [18], and thus is useful in many
pattern mining applications.

9. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules

between sets of items in large databases. In Proceedings of the ACM
SIGMOD, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.
Advances in knowledge discovery and data mining. chapter Fast
discovery of association rules, pages 307–328. American Association
for Artificial Intelligence, Menlo Park, CA, USA, 1996.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proceedings of the 11th ICDE, 1995.

[4] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante:
Anticipated data reduction in constrained pattern mining. Knowledge
Discovery in Databases: PKDD 2003, 2003.

[5] F. Bonchi and C. Lucchese. On closed constrained frequent pattern
mining. In Data Mining, 2004. ICDM’04. Fourth IEEE International
Conference on, pages 35–42. IEEE, 2004.

[6] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent
itemset algorithm for transactional databases. In Proceedings of the
17th ICDE, 2001.

[7] L. Cerf, J. Besson, C. Robardet, and J.-F. Boulicaut. Closed patterns
meet n-ary relations. ACM Trans. Knowl. Discov. Data,
3(1):3:1–3:36, Mar. 2009.

[8] K. Gade, J. Wang, and G. Karypis. Efficient closed pattern mining in
the presence of tough block constraints. In Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 138–147. ACM, 2004.

[9] K. Gouda and M. Zaki. Genmax: An efficient algorithm for mining
maximal frequent itemsets. Data Mining and Knowledge Discovery,
2005.

[10] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining:
current status and future directions. Data Mining and Knowledge
Discovery, 2007.

[11] J. Han, P. Jian, and Y. Yin. Mining frequent patterns without
candidate generation. In Proceedings of ACM SIGMOD, 2000.

[12] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering
frequent closed itemsets for association rules. In Proceedings of the
7th International Conference on Database Theory, 1999.

[13] J. Pei, J. Han, and L. Lakshmanan. Mining frequent itemsets with
convertible constraints. In Proceedings of the 17th ICDE, 2001.

[14] A. Soulet and B. Crémilleux. Mining constraint-based patterns using
automatic relaxation. Intell. Data Anal., 13(1):109–133, Jan. 2009.

[15] J. Vreeken, M. van Leeuwen, and A. Siebes. Krimp: mining itemsets
that compress. Data Mining and Knowledge Discovery, pages 1–46,
2011.

[16] C. Wang and S. Parthasarathy. Learning approximate mrfs from large
transactional data. Statistical Network Analysis: Models, Issues, and
New Directions, pages 182–185, 2007.

[17] J. Wang, J. Han, Y. Lu, and P. Tzvetkov. Tfp: An efficient algorithm
for mining top-k frequent closed itemsets. Knowledge and Data
Engineering, IEEE Transactions on, 2005.

[18] T. Washio and H. Motoda. State of the art of graph-based data
mining. ACM SIGKDD Explorations Newsletter, 2003.

84

